Hình 5a:
Xét tam giác ABC, \(\widehat B = {90^o}\) ; \(\widehat A = \alpha \) .
Ta có:
sin\(\alpha \) = \(\frac{{BC}}{{AC}} = \frac{4}{5} = 0,8\)
cos \(\alpha \) = \(\frac{{BA}}{{AC}} = \frac{3}{5} = 0,6\)
tan \(\alpha \) = \(\frac{{BC}}{{BA}} = \frac{4}{3} = 1,33\)
cot \(\alpha \) = \(\frac{{BA}}{{BC}} = \frac{3}{4} = 0,75\)
Hình 5b:
Xét tam giác ABC, \(\widehat B = {90^o}\) ; \(\widehat A = \alpha \) .
Ta có:
sin\(\alpha \) = \(\frac{{BC}}{{AC}} = \frac{1}{{\sqrt {17} }} = 0,24\)
cos \(\alpha \) = \(\frac{{BA}}{{AC}} = \frac{4}{{\sqrt {17} }} = 0,97\)
tan \(\alpha \) = \(\frac{{BC}}{{BA}} = \frac{1}{4} = 0,25\)
cot \(\alpha \) = \(\frac{{BA}}{{BC}} = \frac{4}{1} = 4\)
Hình 5c:
Xét tam giác ABC, \(\widehat B = {90^o}\) ; \(\widehat A = \alpha \) .
Ta có:
BC = \(\sqrt {A{C^2} - A{B^2}} = \sqrt {{3^2} - {2^2}} = \sqrt 5 \)
sin\(\alpha \) = \(\frac{{BC}}{{AC}} = \frac{{\sqrt 5 }}{3} = 0,75\)
cos \(\alpha \) = \(\frac{{BA}}{{AC}} = \frac{2}{3} = 0,67\)
tan \(\alpha \) = \(\frac{{BC}}{{BA}} = \frac{{\sqrt 5 }}{2} = 1,12\)
cot \(\alpha \) = \(\frac{{BA}}{{BC}} = \frac{2}{{\sqrt 5 }} = 0,89\)
Hình 5d:
Xét tam giác ABC, \(\widehat B = {90^o}\) ; \(\widehat A = \alpha \) .
Ta có:
AC = \(\sqrt {B{C^2} + A{B^2}} = \sqrt {{{\left( {\sqrt 6 } \right)}^2} + {{\left( {\sqrt {10} } \right)}^2}} = 4\)
sin\(\alpha \) = \(\frac{{BC}}{{AC}} = \frac{{\sqrt 6 }}{4} = 0,61\)
cos \(\alpha \) = \(\frac{{BA}}{{AC}} = \frac{{\sqrt {10} }}{4} = 0,79\)
tan \(\alpha \) = \(\frac{{BC}}{{BA}} = \frac{{\sqrt 6 }}{{\sqrt {10} }} = 0,77\)
cot \(\alpha \) = \(\frac{{BA}}{{BC}} = \frac{{\sqrt {10} }}{{\sqrt 6 }} = 1,29\)