Bài 1. Tỉ số lượng giác của góc nhọn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Sử dụng tỉ số lượng giác để giải thích tình huống trong Hoạt động khởi động (Trang 60).

Tại một thời điểm, khi những tia nắng chiếu, cây và bóng tạo thành các tam giác vuông như hình bên. Với \(\widehat C = \widehat {C'}\) , so sánh các tỉ số \(\frac{{AB}}{{AC}}\) và \(\frac{{A'B'}}{{A'C'}}\) .

datcoder
25 tháng 10 lúc 22:09

Hình 5a:

Xét tam giác ABC, \(\widehat B = {90^o}\) ; \(\widehat A = \alpha \) .

Ta có:

sin\(\alpha \) = \(\frac{{BC}}{{AC}} = \frac{4}{5} = 0,8\)

cos \(\alpha \) = \(\frac{{BA}}{{AC}} = \frac{3}{5} = 0,6\)

tan \(\alpha \) = \(\frac{{BC}}{{BA}} = \frac{4}{3} = 1,33\)

cot \(\alpha \) = \(\frac{{BA}}{{BC}} = \frac{3}{4} = 0,75\)

Hình 5b:

Xét tam giác ABC, \(\widehat B = {90^o}\) ; \(\widehat A = \alpha \) .

Ta có:

sin\(\alpha \) = \(\frac{{BC}}{{AC}} = \frac{1}{{\sqrt {17} }} = 0,24\)

cos \(\alpha \) = \(\frac{{BA}}{{AC}} = \frac{4}{{\sqrt {17} }} = 0,97\)

tan \(\alpha \) = \(\frac{{BC}}{{BA}} = \frac{1}{4} = 0,25\)

cot \(\alpha \) = \(\frac{{BA}}{{BC}} = \frac{4}{1} = 4\)

Hình 5c:

Xét tam giác ABC, \(\widehat B = {90^o}\) ; \(\widehat A = \alpha \) .

Ta có:

BC = \(\sqrt {A{C^2} - A{B^2}} = \sqrt {{3^2} - {2^2}} = \sqrt 5 \)

sin\(\alpha \) = \(\frac{{BC}}{{AC}} = \frac{{\sqrt 5 }}{3} = 0,75\)

cos \(\alpha \) = \(\frac{{BA}}{{AC}} = \frac{2}{3} = 0,67\)

tan \(\alpha \) = \(\frac{{BC}}{{BA}} = \frac{{\sqrt 5 }}{2} = 1,12\)

cot \(\alpha \) = \(\frac{{BA}}{{BC}} = \frac{2}{{\sqrt 5 }} = 0,89\)

Hình 5d:

Xét tam giác ABC, \(\widehat B = {90^o}\) ; \(\widehat A = \alpha \) .

Ta có:

AC = \(\sqrt {B{C^2} + A{B^2}} = \sqrt {{{\left( {\sqrt 6 } \right)}^2} + {{\left( {\sqrt {10} } \right)}^2}} = 4\)

sin\(\alpha \) = \(\frac{{BC}}{{AC}} = \frac{{\sqrt 6 }}{4} = 0,61\)

cos \(\alpha \) = \(\frac{{BA}}{{AC}} = \frac{{\sqrt {10} }}{4} = 0,79\)

tan \(\alpha \) = \(\frac{{BC}}{{BA}} = \frac{{\sqrt 6 }}{{\sqrt {10} }} = 0,77\)

cot \(\alpha \) = \(\frac{{BA}}{{BC}} = \frac{{\sqrt {10} }}{{\sqrt 6 }} = 1,29\)