Dao động cơ học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
trần thị phương thảo

Một vật trượt không vận tốc đầu từ đỉnh mặt phẳng nghiêng anpha = 30 độ. Hệ số ma sát giữa vật và mặt phẳng nghiêng thay đổi cùng với sự tăng khoảng cách x tính từ đỉnh mặt phẳng nghiêng theo qui luật hệ số ma sát = 0,1x. Vật dừng lại trước khi đến chân mặt phẳng nghiêng. Lấy g = 10m/s2. Thời gian kể từ lúc vật bắt đầu trượt cho tới khi dừng lại là.

A. t = 2,675s                                B. t = 3,375s                                      C. t = 5,356s                                        D. t = 4,378s

Hai Yen
29 tháng 3 2015 lúc 22:36

NPFms0yx

Áp dụng định luật II Niuton ta có: \(\overrightarrow{P}+ \overrightarrow{F_{ms}} + \overrightarrow{N} = m\overrightarrow{a}\)

chiếu lên Ox: \(P \sin \alpha - F_{ms} = ma.(1)\)

chiếu lên Oy: \(-P \cos \alpha + N = 0\) => \(N = P\cos \alpha.\) Thay vào phương trình (1) ta được

=> \(g \sin \alpha - 0,1.x.\cos \alpha = a\) (do \(F_{ms} = \mu N = 0,1.x.P\sin \alpha.\))

=> \(x'' + g\cos \alpha .0,1x - g\sin \alpha = 0.\)(do \(a = x'')\)

=> \(x'' + g\cos \alpha .0,1(x - 10\tan \alpha) = 0.\)

Đặt \(X = x- 10 \tan \alpha\) => \(X''(t) = x''(t)\)

=> \(X(t)'' + g\cos \alpha .0,1.X(t) = 0.\)

Phương trình có nghiệm là: \(X(t) = A\cos (\omega t+ \varphi)\)\(\omega = \sqrt{0,1.g.\cos \alpha} = \sqrt{\frac{\sqrt{3}}{2}} \approx 0,93 rad/s.\)

0VoMN

Ban đầu vật ở đỉnh dốc có vận tốc bằng 0. Thời gian đến điểm có vận tốc bằng 0 tiếp theo là

\(t = \frac{\varphi}{\omega} = \frac{\pi}{0,93} \approx 3,375 s.\) 

Chọn đáp án B.3,375s.


Các câu hỏi tương tự
nguyễn mạnh tuấn
Xem chi tiết
giapdoan
Xem chi tiết
Trung Nguyễn
Xem chi tiết
Su Bi
Xem chi tiết
Tiểu Thiên
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Phạm Đắc Quyền
Xem chi tiết
Vũ Phi Hùng
Xem chi tiết
na nhi
Xem chi tiết