\(f_1=60Hz , cos\varphi=1 \Rightarrow Z_{L1}=Z_{C1}\)
\(f_2=120Hz=2f_1 \Rightarrow Z_{L2}=2Z_{L1}; Z_{C2}=0,5Z_{C1}=0,5Z_{L1}\)
\(\Rightarrow cos\varphi_2=\frac{R}{\sqrt{R^2+\left(Z_{L2}-Z_{C2}\right)^2}}=\frac{R}{\sqrt{R^2+\left(2Z_{L1}-0,5Z_{C1}\right)^2}}=\frac{R}{\sqrt{R^2+\left(2Z_{L1}-0,5Z_{L1}\right)^2}}=\frac{R}{\sqrt{R^2+\left(1,5Z_{L1}\right)^2}}=0,707\)\(\Rightarrow Z_{L1}=\frac{R}{1,5}\)(*)
\(f_3=90Hz=1,5f_1\Rightarrow Z_{L3}=1,5Z_{L1};Z_{C3}=\frac{Z_{C1}}{1,5}=\frac{Z_{L1}}{1,5}\)
\(\Rightarrow cos\varphi_3=\frac{R}{\sqrt{R^2+\left(Z_{L3}-Z_{C3}\right)^2}}=\frac{R}{\sqrt{R^2+\left(1,5Z_{L1}-\frac{Z_{L1}}{1,5}\right)^2}}\)(**)
Thay (*) vao (**)\(\Rightarrow cos\varphi_3=\frac{R}{\sqrt{R^2+\left(1,5.\frac{R}{1,5}-\frac{R}{\left(1,5\right)^2}\right)^2}}=\frac{R}{\sqrt{R^2+\frac{25}{81}R^2}}\approx0,874\)
=>A