Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Khảo sát và vẽ đồ thị của các hàm số sau:

a) \(y=3+\dfrac{1}{x}\);                        b) \(y=\dfrac{x-3}{1-x}\).

datcoder
28 tháng 10 lúc 23:08

a) \(y = 3 + \frac{1}{x}\)

Tập xác định: \(D = \mathbb{R}\backslash \{ 0\} \)

- Chiều biến thiên:

\(y' =  - \frac{1}{{{x^2}}} < 0\forall x \in D\) nên hàm số nghịch biến trên D

- Tiệm cận:

\(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } (3 + \frac{1}{x}) = 3;\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } (3 + \frac{1}{x}) = 3\) nên y = 3 là tiệm cận ngang của đồ thị hàm số

\(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} (3 + \frac{1}{x}) =  + \infty ;\mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} (3 + \frac{1}{x}) =  - \infty \) nên x = 0 là tiệm cận đứng của đồ thị hàm số

- Bảng biến thiên:

Ta có: \(y = 0 \Leftrightarrow 3 + \frac{1}{x} = 0 \Leftrightarrow x =  - \frac{1}{3}\)

Vậy đồ thị của hàm số giao với trục Ox tại điểm (\( - \frac{1}{3}\); 0)

b) \(y = \frac{{x - 3}}{{1 - x}}\)

Tập xác định: \(D = \mathbb{R}\backslash \{ 1\} \)

Chiều biến thiên:

\(y' = \frac{{ - 2}}{{{{(1 - x)}^2}}} < 0\forall x \in D\) nên hàm số nghịch biến trên D

Tiệm cận:

\(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x - 3}}{{1 - x}} =  - 1\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \frac{{x - 3}}{{1 - x}} =  - 1\) nên y = -1 là tiệm cận ngang của đồ thị hàm số

\(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 3}}{{1 - x}} =  + \infty ;\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{x - 3}}{{1 - x}} =  - \infty \) nên x = 1 là tiệm cận đứng của đồ thị hàm số

Bảng biến thiên:

Khi x = 0 thì y = -3 nên (0; -3) là giao của đồ thị hàm số với trục Oy

Ta có: \(y = 0 \Leftrightarrow \frac{{x - 3}}{{1 - x}} = 0 \Leftrightarrow x = 3\)

Vậy đồ thị của hàm số giao với trục Ox tại điểm (3; 0)