Bài 2: Công thức xác suất toàn phần và công thức Bayes

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Hộp thứ nhất có 3 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 3 viên bi xanh và 7 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời 2 viên bi từ hộp thứ hai.

a) Tính xác suất để hai viên bi lấy ra từ hộp thứ hai là bi đỏ.

b) Biết rằng 2 viên bi lấy ra từ hộp thứ hai là bi đỏ, tính xác suất viên bi lấy ra từ hộp thứ nhất cũng là bi đỏ.

datcoder
30 tháng 10 lúc 14:19

Gọi \(A\) là biến cố “Lần thứ nhất lấy được viên bi đỏ”, \(B\) là biến cố “Lần thứ hai lấy ra được 2 viên bi đỏ”. Theo đề bài, ta có \(P\left( A \right) = \frac{6}{{3 + 6}} = \frac{2}{3}\) và \(P\left( {\bar A} \right) = \frac{3}{{3 + 6}} = \frac{1}{3}.\)

Trường hợp lần thứ nhất lấy được viên bi đỏ bỏ vào hộp thứ hai, lúc này hộp thứ hai sẽ có 3 bi xanh và 8 bi đỏ, do đó \(P\left( {B|A} \right) = \frac{{C_8^2}}{{C_{11}^2}} = \frac{{28}}{{55}}.\)

Trường hợp lần thứ nhất lấy được viên bi xanh bỏ vào hộp thứ hai, lúc này hộp thứ hai sẽ có 4 viên bi xanh và 7 viên bi đỏ, do đó \(P\left( {B|\bar A} \right) = \frac{{C_7^2}}{{C_{11}^2}} = \frac{{21}}{{55}}.\)

a) Xác suất để lấy được hai viên bi đỏ ở hộp thứ hai là:

\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right) = \frac{2}{3}.\frac{{28}}{{55}} + \frac{1}{3}.\frac{{21}}{{55}} = \frac{7}{{15}}.\)

b) Xác suất để viên bi lấy ra từ hộp thứ nhất cũng là bi đỏ, nếu lấy ra được 2 viên bi đỏ ở hộp thứ hai là:

\(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{\frac{2}{3}.\frac{{28}}{{55}}}}{{\frac{7}{{15}}}} = \frac{8}{{11}}.\)