Bài 26. Làm quen với Khoa học dữ liệu

datcoder

Có thể hiểu đơn giản Khoa học dữ liệu là lĩnh vực khoa học nghiên cứu về dữ liệu. Như vậy, đối tượng nghiên cứu của Khoa học dữ liệu chính là dữ liệu. Theo em, Khoa học dữ liệu không bao gồm công việc nào sau đây?

A. Nghiên cứu phát triển các phương pháp thu thập và quản lí dữ liệu.

B. Khai phá các thông tin, tri thức từ dữ liệu thu được để nâng cao hiệu quả kinh doanh, quản lí.

C. Kinh doanh, phân phối dữ liệu thu thập được cho các cá nhân, tổ chức quan tâm.

D. Phát triển và áp dụng các phương pháp và kĩ thuật để nhận biết các mẫu hình, các quan hệ và xu hướng có trong dữ liệu.

datcoder
10 tháng 5 lúc 21:20

Đáp án đúng là: C. Kinh doanh, phân phối dữ liệu thu thập được cho các cá nhân, tổ chức quan tâm.

Lý do chọn đáp án này là vì các hoạt động trong lựa chọn C không nằm trong phạm vi hoạt động của Khoa học Dữ liệu. Dưới đây là lý do chi tiết:

A. Nghiên cứu phát triển các phương pháp thu thập và quản lí dữ liệu: Đây là một phần quan trọng của Khoa học Dữ liệu. Việc thu thập và quản lý dữ liệu một cách hiệu quả là cần thiết để có thể sử dụng dữ liệu đó cho các mục đích nghiên cứu và ứng dụng.

B. Khai phá các thông tin, tri thức từ dữ liệu thu được để nâng cao hiệu quả kinh doanh, quản lí: Đây cũng là một phần chính của Khoa học Dữ liệu. Việc khai thác tri thức từ dữ liệu có thể giúp cải thiện quyết định kinh doanh và quản lý thông qua việc phân tích dữ liệu và rút ra các insights quan trọng.

C. Kinh doanh, phân phối dữ liệu thu thập được cho các cá nhân, tổ chức quan tâm: Đây không phải là một phần của Khoa học Dữ liệu. Trong thực tế, việc kinh doanh và phân phối dữ liệu thường liên quan đến các hoạt động thương mại, không phải nghiên cứu và phân tích dữ liệu.

D. Phát triển và áp dụng các phương pháp và kỹ thuật để nhận biết các mẫu hình, các quan hệ và xu hướng có trong dữ liệu: Đây là một phần quan trọng của Khoa học Dữ liệu. Việc phát triển và áp dụng các phương pháp và kỹ thuật như machine learning và data mining giúp phân tích và nhận biết các mẫu hình và xu hướng trong dữ liệu.

Bình luận (0)