Có hai chiếc hộp, hộp I có 5 viên bi màu trắng và 5 viên bi màu đen, hộp II có 6 viên bi màu trắng và 4 viên bi màu đen, các viên bi có cùng kích thước và khối lượng. Lấy ngẫu nhiên một viên bi từ hộp I bỏ sang hộp II.
Sau đó lấy ngẫu nhiên một viên bi từ hộp II.
a) Tính xác suất để viên bi được lấy ra từ hộp II là viên bi màu trắng.
b) Giả sử viên bi được lấy ra từ hộp II là viên bi màu trắng. Tính xác suất viên bi màu trắng đó thuộc hộp I.
a) Gọi các biến cố:
A: “Viên bi lấy ra từ hộp I bỏ sang hộp II là bi màu trắng”.
Suy ra \(\overline A \): “Viên bi lấy ra từ hộp I bỏ sang hộp II là bi màu đen”.
B: “Viên bi lấy ra từ hộp II là màu trắng”.
Theo đề bài ta có: \(P\left( A \right) = P\left( {\bar A} \right) = \frac{1}{2}\).
Nếu A xảy ra, hộp II sẽ có 7 viên bi trắng trong tổng số 11 viên. Do đó: \(P\left( {B|A} \right) = \frac{7}{{11}}\).
Nếu \(\overline A \) xảy ra, hộp II sẽ có 6 viên bi trắng trong tổng số 11 viên. Do đó: \(P\left( {B|\bar A} \right) = \frac{6}{{11}}\).
Áp dụng công thức xác suất toàn phần:
\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right) = \frac{1}{2}.\frac{7}{{11}} + \frac{1}{2}.\frac{6}{{11}} = \frac{{13}}{{22}}\).
b) C: “Viên bi được chọn từ hộp II là viên bi được chuyển từ hộp I”.
Có \(P(C|B) = \frac{{\frac{5}{{10}}.\frac{1}{{11}}}}{{\frac{{13}}{{22}}}} = \frac{1}{{13}}\).