Vì \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)
Ta có \(\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\)
\(\Leftrightarrow a^2cd-b^2cd=c^2ab-d^2ab=0\)
\(\Leftrightarrow ad.ac-bc.bd-ca.bc+ad.bd=0\) (1)
Thay \(ad=bc\) ta được
\(\left(1\right)\Leftrightarrow bc.ac-bc.bd-ca.bc+bc.bd=0\)
\(\Leftrightarrow\left(bc.ac-ca.bc\right)+\left(bc.bd-bc.bd\right)=0\) (luôn đúng)
Vậy \(\dfrac{a}{b}=\dfrac{c}{d}\) thì \(\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\) (đpcm)