
a) Xét đường tròn đường kính MC có \(\widehat{MDC}=90^o\) (góc nội tiếp chắn nửa đường tròn).
Ta có ∆BAC vuông tại A và ∆BDC vuông tại D cùng nội tiếp đường tròn đường kính BC.
Suy ra ABCD là tứ giác nội tiếp đường tròn đường kính BC.
b) Xét đường tròn đường kính MC có \(\widehat{MNC}=90^o\) (góc nội tiếp chắn nửa đường tròn).
Xét ∆MBC có NC ⊥ MN, suy ra BC ⊥ MN; MC ⊥ AB; MB ⊥ CD.
Hay MN, AB, CD là các đường cao trong ∆MBC.
Khi đó, MN, AB, CD cùng đi qua một điểm (trực tâm H).
Đúng 0
Bình luận (0)