Trong khong gian voi he truc toa do oxyz, cho duong thang d:x/1=y+1/2=z+2/3 va mat phang (p): x+2y-2z+3=0. Viet phuong trinh mat phang (a) di qua goc toa do va vuong goc voi d. Tim toa do M thuoc duong thang d sao cho khoang cach tu M den mat phang (p) = 2
Cho tam giác ABC có điểm M(0;3) thuộc đường cao kẻ từ đỉnh A. Gọi D,E,F lần lượt là chân đường cao hạ từ đỉnh A,B,C. Biết rằng D(2;-1) E(2;2) và F thuộc đường thẳng: 5x - y + 12 = 0. Tìm toạ độ A, B, C.
cho hinh hop ABCD.A'B'C'D' biet A(1;0;1) ; B(2;1;2) ; D(1;-1;1) ; C'(4;5;-5) . Tinh toa do cac dinh con lai cua hinh hop
voi gia tri nao cua m thi do thi cua ham so y=12x +(7-m) va y=2x+(3+m) cat nhau tai mt diem nam tren truc tung
cho tam giác ABC vuông tại A, điểm I(9;9) thuộc cạnh AB(IB<IA).Đường tròn (C) tâm I bán kính IB cắt AB,BC lần lượt tại D và E,AE cắt đừơng tròn (C) tại G(10;2).Biết GD=\(2\sqrt{10}\) và C thuộc (d):x-2y-10=0. Tìm toạ độ ba đỉnh tam giác A,B,C biết B có toạ độ nguyên.
Cho hình bình hành ABCD ncos phương trình đường chéo AC: x-y+1=0 điểm G(1;4) là trọng tâm tam giác ABC điểm E(0;-3) thuộc đường cao kẻ từ D của tam giác ACD. Tìm toạ độ các đỉnh của hình bình hành cho S tứ giác AGCD=32 và tung độ yA>0
1.Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diên tích bằng 18.Gọi E là trung điểm của BC.Đường tròn ngoại tiếp tam giác CDE cắt đường chéo AC tại G (G không trùng C).Biết E(1;-1), G(2/5;4/5) và điểm D thuộc đường thẳng d:x+y-6=0. Tìm tọa độ các điểm A,B,C,D.
2.Cho hình chóp s.abc có đáy ABC là tam giác đều cạnh a, tam giác SAB vuông cân tại đỉnh S và nằm trong mặt phẳng vuông góc với mặt đáy.Tính thể tích khối chóp S.ABC và khoảng cách giữa 2 đường thẳng SB và AC theo a.
3.Giải hệ phương trình
\(\begin{cases}\sqrt{3-x}+\sqrt{y+1}=x^{3^{ }}\\x^{3^{ }}-y^{3^{ }}+12x-3y=3y^{2^{ }}-6x^{2^{^{ }}}-7\end{cases}\)
Cho hình tứ diện ABCD. Gọi M. N, P, Q lần lượt là trung điểm của các cạnh AC, BD, AD, BC. Chứng minh rằng :
a) \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}=2\overrightarrow{MN}\)
b) \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AC}-\overrightarrow{BD}=2\overrightarrow{PQ}\)