Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M,N lần lượt là trung điểm của hai cạnh S4 và CD. a) Tìm giao tuyến của hai mặt phẳng (S4C) và (SBD).Chứng minh OM // (SCD). b) Tìm giao điểm của đường thẳng DM và mặt phẳng (SBC). c) Xác định thiết diện tạo bởi mặt phẳng (OMN) và hình chóp S.ABCD. d) Gọi G là trọng tâm tam giác SCD; T là một điểm trên cạnh BC sao cho BT=2TC. Chứng minh GT ||(SAB).
Trong mặt phẳng tọa độ Oxy, cho điểm A (3;5) , D( 5;2). Đường thẳng (d) có phương trình: x + 2y - 5 = 0, đường tròn (C') tâm I có phương trình: (x+1)2 + (y-2)2 = 36
a) Viết phương trình đường thẳng (d') đối xứng với (d) qua trục Oy
b) Cho điểm B thuộc (d) , điểm C thuộc (C') sao cho ACBD là hình bình hành.
Mình phát hiện được điểm I thuộc (d'), điểm D thuộc (C') và IA vuông góc với IC, nhưng không chứng minh được. Mọi người giúp mình với nhé.
Cho hình vuông ABCD, tâm O. Tìm ảnh của tam giác ABC qua phép quay tâm O góc -45 độ
Câu 17: Cho hình chóp SABCD, đáy ABCD có các cặp cạnh đối không song song. Gọi E là giao điểm của AC và BD. F là giao điểm của AB và co. Khẳng định nào đúng? A. (SAD) (SBC)-SE. B. (SAD) (SCB)=SF. C. (SAB) (SCD) = SE. D. (SAB) (SCD) = SF.
trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(2;4), B(5;1), C(- 1; - 2). Phép tịnh tiến theo BC biến tam giác ABC tành tam giác A'B'C'. Tìm tọa độ trọng tâm của tam giác A'B'C'.Các bạn cho mình xin hình vẽ để dễ hình dung nhé.Mình cảm ơn !
Cho hình chóp S.ABCD. Gọi I, J, K là 3 điểm lần lượt trên SA, AB, BC. Giả sử JK cắt CD và AD. Tìm giao điểm của SD và SC với mặt phẳng (IKJ).
Cho hình vuông ABCD tâm O. Chọn khẳng định đúng:
A. Phép quay tâm A góc quay 90o biến điểm A thành điểm O
B. Phép quay tâm A góc quay 90o biến điểm A thành điểm A
C. Phép quay tâm A góc quay 90o biến điểm A thành điểm B
D. Phép quay tâm A góc quay 90o biến điểm A thành điểm D
Cho hình vuông ABCD tâm O. Hỏi phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm O góc quay 90o và phép tịnh tiến theo vectơ biến đoạn thẳng AB thành đoạn thẳng nào trong các đoạn thẳng sau?
A. AB
B. CB
C. DA
D. BC