Bài 3: Biểu thức toạ độ của các phép toán vectơ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quốc Đạt

Cho hình chóp S.ABC có SA \(\perp\) (ABC), SA = a và đáy ABC là tam giác đều cạnh a, O là trung điểm của BC. Bằng cách thiết lập hệ tọa độ như Hình 3, hãy tìm tọa độ:

a) Các điểm A, S, B, C.

b) Trung điểm M của SB và trung điểm N của SC.

c) Trọng tâm G của tam giác SBC.

Nguyễn Quốc Đạt
29 tháng 10 2024 lúc 0:02

a) \(OA = \sqrt {A{B^2} - O{B^2}}  = \sqrt {{a^2} - {{(\frac{a}{2})}^2}}  = \frac{{a\sqrt 3 }}{2}\)

\(\overrightarrow {OA}  = \frac{{a\sqrt 3 }}{2}\overrightarrow j  = (0;\frac{{a\sqrt 3 }}{2};0) \Rightarrow A(0;\frac{{a\sqrt 3 }}{2};0)\)

\(\overrightarrow {OB}  =  - \frac{a}{2}\overrightarrow i  = ( - \frac{a}{2};0;0) \Rightarrow B( - \frac{a}{2};0;0)\)

\(\overrightarrow {OC}  = \frac{a}{2}\overrightarrow i  = (\frac{a}{2};0;0) \Rightarrow C(\frac{a}{2};0;0)\)

\(\overrightarrow {OS}  = \frac{{a\sqrt 3 }}{2}\overrightarrow j  + a\overrightarrow k  = (0;\frac{{a\sqrt 3 }}{2};a) \Rightarrow S(0;\frac{{a\sqrt 3 }}{2};a)\)

b) \(M(\frac{{0 - \frac{a}{2}}}{2};\frac{{\frac{{a\sqrt 3 }}{2}}}{2};\frac{a}{2})\) hay \(M( - \frac{a}{2};\frac{{a\sqrt 3 }}{4};\frac{a}{2})\)

\(N(\frac{{0 + \frac{a}{2}}}{2};\frac{{\frac{{a\sqrt 3 }}{2}}}{2};\frac{a}{2})\) hay \(N(\frac{a}{2};\frac{{a\sqrt 3 }}{4};\frac{a}{2})\)

c) \(G(\frac{{0 + \frac{a}{2} - \frac{a}{2}}}{3};\frac{{\frac{{a\sqrt 3 }}{2}}}{3};\frac{a}{3})\) hay \(G(0;\frac{{a\sqrt 3 }}{6};\frac{a}{3})\)