Cho đường thẳng d : x- y + 1 = 0 và đường tròn C : x^2 + y^2 -4x +2y -4 = 0
a) Chứng minh điểm M (2;1) nằm trong đường tròn
b) Xét vị trí tương đối giữa d và
C
c) Viết phương trình đường thẳng d' vuông góc với và cắt đường tròn tại hai điểm phân biệt sao cho khoảng cách của chúng là lớn nhất.
Trong mặt phẳng với hệ tọa độ Oxy,cho điểm M(2,1) và đường thẳng d: x-y+1=0. Viết phương trình đường tròn đi qua M cắt d ở 2 điểm A,B phân biệt sao cho tam giác MAB vuông tại M và có diện tích bằng 2
Trong mặt phẳng Oxy, cho điểm I(1;-1) và đường thẳng d:x+y+2=0.Viết phương trình đường tròn tâm I cắt d tại hai điểm phân biệt A,B sao cho AB=2
Cho đường tròn (C): \(\left(x-1\right)^2+\left(y-1\right)^2=25\) và M(0;-2). Hãy viết đường thẳng qua M và cắt đường tròn tại 2 điểm A, B sao cho diện tích tam giác IAB lớn nhất. (I là tâm đường tròn)
Cho (C) : (x-4)2 + y2 = 25 và điểm M(1;-1). Tìm đường thẳng Δ qua M và cắt đường tròn (C) tại 2 điểm phân biệt A,B sao cho MA = 3MB.
b) Viết phương trình đường tròn tâm I(1; - 2) và cắt dường thẳng d: x - 3y - 17 =0 tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB bằng 10.
Câu 81: Trong mặt phẳng (Oxy), cho 2 đường tròn (C1): x^2 + y^2=8 và (C2): (x-2)^2 + y^2=4 cắt nhau tại 2 điểm phân biệt A và B. Phương trình đường thẳng AB là Giúp em với:((((
Cho đường tròn (C) : (x − 1)2 + (y + 2)2 = 25 và đường thẳng d : x + 2y − 10 = 0. Tìm điểm M trên d sao cho: (a) Đường thẳng qua M, vuông góc với d là tiếp tuyến của (C). (b) Hai tiếp tuyến với (C) qua M tạo với nhau một góc vuông. (c) Tam giác tạo bởi M và hai tiếp điểm của các tiếp tuyến với (C) qua M là tam giác đều. (d) Hai tiếp tuyến với (C) qua M tạo với nhau một góc lớn nhất.
Trong mặt phẳng hệ tọa độ oxy, cho đường tròn (C):(x-2)2+(y-3)2=100 và đường thẳng denta:3x-4y+1=0.Gọi A,B là hai giao điểm của denta và(C).Tính độ dài đoạn thẳng AB