a. ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(A=\left(\frac{2\sqrt{x}+x}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\right):\left(\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\\ =\left(\frac{2\sqrt{x}+x-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\\ =\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{x+\sqrt{x}+1}{\sqrt{x}+2}\\ =\frac{1}{\sqrt{x}+2}\)
b.
\(\sqrt{x}=\sqrt{4+2\sqrt{3}}=\sqrt{3+2\cdot\sqrt{3}\cdot1+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
\(A=\frac{1}{\sqrt{x}+2}=\frac{1}{\sqrt{3}+1+2}=\frac{1}{3+\sqrt{3}}\)
\(\Rightarrow\sqrt{A}=\sqrt{\frac{1}{3+\sqrt{3}}}=\frac{1}{\sqrt{3+\sqrt{3}}}\)
Mình chỉ biết rút gọn đến đó thôi, có gì sai mong bạn bỏ qua