cho tam giác ABC cân tại A , B=30 độ kẻ AH vuông góc với BC ( H thuộc BC ) a tính số đo góc A b chứng minh góc BAH = góc CAH c cho AH = 3cm , HC = 4cm tính độ dài AC d kẻ HE vuông góc với AB , HF vuông goc với AC ( E thuộc AB , F thuộc AC ) . Chứng minh HE = HF
cho tam giác ABC cân tại A , B=30 độ kẻ AH vuông góc với BC ( H thuộc BC ) a tính số đo góc A b chứng minh góc BAH = góc CAH c cho AH = 3cm , HC = 4cm tính độ dài AC d kẻ HE vuông góc với AB , HF vuông goc với AC ( E thuộc AB , F thuộc AC ) . Chứng minh HE = HF
MIK CẦN GẤP MN ƠIII!!!!!!!!! =(((((((((((((((((((((((((((((((((((((((
B.TỰ LUẬN Bài 1 : Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC). Chứng minh: góc BAH = góc CAH Bài 2: Cho tam giác ABC cân tại A (A < 90 độ). Vẽ BH vuông góc AC ( H thuộc AC), CK vuông góc AB ( K thuộc AB). Chứng minh ΔABH = ΔACK.
Cho tam giác ABC cân tại A (ˆA<900)(A^<900). Vẽ BH⊥AC(H∈AC),CK⊥AB(K∈AB)BH⊥AC(H∈AC),CK⊥AB(K∈AB)
a) Chứng minh rằng AH = AK
b) Gọi I là giao điểm của BH và CK. Chứng minh rằng AI là phân giác của góc A
Cho tam giác ABC có AB = BC vẽ BH vuong góc vs AC tại H , vẽ CK vuông góc vs AB tại K . Chứng minh :
a, BH = CK
b, BK= CH
c, chứng minh: góc KBC = góc HCB
d, tam giác KOB = tam giác HOC ( O là giao của BH và CK)
f, AO vuông góc BC
g, KH song song BC
Bài 1 Cho tam giác ABC vuông ở A,có AB=6cm;AC=8cm,phân giác BD(D thuộc AC).Kẻ DE vông góc với BC(E thuộc BC).Gọi F là giao điểm của BA và ED.
a) Tính độ dài cạnh bC?b) Chứng Minh: tam giác BAD= tam giác BEDc) Chứng Minh tam giác DFC cân tại D
Cho tam giác cân ABC cân tại A Kẻ AH vuông góc BC Kẻ HI vuông góc AB Kẻ HKC vuông góc AC
a. chứng minh tam giác AHB= tam giác AHC
b. Chứng minh HB=HC
c. Chứng minh tam giác HIB= tam giác HKC
cho tam giác ABC cân tại a gọi là m là trung điểm của BC.
a) CM: tam giác ABM=tam giác ACM?
B)kẽ MH vông góc AB (H thuộc AB) kẽ MH vuông góc AC (K thuộc AC)
chứng minh :tam giác BHM=CKM?
Bài 5. Cho tam giác ABC có AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. Qua I kẻ các đường thẳng vuông góc với hai cạnh của góc A, cắt các tia AB và AC theo thứ tự tại H và K. Chứng minh rằng
a) AH = AK
b) BH = CK
c) AK = \(\dfrac{AC+AB}{2}\) , CK = \(\dfrac{AC-AB}{2}\)