a) Vì parabol \(y = a{x^2}\) đi qua điểm \(A\left( {2;4\sqrt 3 } \right)\) nên ta có: \(4\sqrt 3 = a{.2^2} \Rightarrow a = \sqrt 3 \)
Suy ra, parabol cần tìm là: \(y = \sqrt 3 {x^2}\).
Vẽ đồ thị hàm số \(y = \sqrt 3 {x^2}\):
Lập bảng một số cặp giá trị tương ứng của x và y:
x | -2 | -1 | 0 | 1 | 2 |
y | \(4\sqrt{3}\) | \(\sqrt{3}\) | 0 | \(\sqrt{3}\) | 4\(\sqrt{3}\) |
Biểu diễn các điểm \(\left( { - 2;4\sqrt 3 } \right);\left( { - 1;\sqrt 3 } \right);\left( {0;0} \right);\left( {1;\sqrt 3 } \right);\left( {2;4\sqrt 3 } \right)\) trên mặt phẳng tọa độ Oxy và nối chúng lại ta được đồ thị hàm số \(y = \sqrt 3 {x^2}\) như hình vẽ.
b) Thay \(x = - 1\) vào hàm số \(y = \sqrt 3 {x^2}\) ta có: \(y = \sqrt 3 .{\left( { - 1} \right)^2} = \sqrt 3 \). Vậy tung độ của điểm thuộc parabol có hoành độ \(x = - 1\) là \(y = \sqrt 3 \).
c) Thay \(y = 5\sqrt 3 \) vào hàm số \(y = \sqrt 3 {x^2}\) ta có: \(5\sqrt 3 = \sqrt 3 .{x^2}\), suy ra \(x = \sqrt 5 \) hoặc \(x = - \sqrt 5 \).
Vậy các điểm thuộc parabol có tung độ \(y = 5\sqrt 3 \) là \(\left( {\sqrt 5 ;5\sqrt 3 } \right);\left( { - \sqrt 5 ;5\sqrt 3 } \right)\).