Ba người đi xe đạp từ A đến B với vận tốc không đổi. Người thứ nhất và người thứ hai xuất phát cùng một lúc với các vận tốc tương ứng v1 = 10km/h và v2 = 12km/h. Người thứ 3 xuất phát sau 2 người nói trên 30 phút. Khoảng thời gian giữa 2 lần gặp nhau của người thứ ba với hai người đi trước t = 1 giờ. Tìm vận tốc ngưòi thứ ba.
Gọi v3 là vận tốc của người thứ ba ( v3 > v1,v2 => v3 > 12 )
t1 là thời gian mà người thứ nhất đi từ A cho đến khi gặp người thứ ba
t2 là thời gian mà người thứ hai đi từ A cho đến khi gặp người thứ ba
30 phút = 0,5 giờ
Khi người thứ nhất gặp người thứ ba, ta có phương trình :
v3.(t1 -0,5) = v1.t1
<=> v3.t1 - 0,5v3 = 10t1
<=> v3.t1 - 10t1 = 0,5v3
<=> t1 = \(\dfrac{0,5v_3}{v_3-10}\) (1)
Khi người thứ hai gặp người thứ ba, ta có phương trình :
v3.(t2-0,5) = v2.t2
<=> v3.t2 - 0,5v3 = 12t2
<=> v3.t2 - 12t2 = 0,5v3
<=> t2 = \(\dfrac{0,5v_3}{v_3-12}\) (2)
Từ (1) và (2) => t1 < t2 \(\left(\dfrac{0,5v_3}{v_3-10}< \dfrac{0,5v_3}{v_3-12}\right)\)
=> t2 - t1 = t
<=> \(\dfrac{0,5v_3}{v_3-12}\) - \(\dfrac{0,5v_3}{v_3-10}\) = 1
<=> 0,5v3.(v3-10) - 0,5v3(v3-12) = (v3-12).(v3-10)
<=> 0,5v3.(v3-10-v3+12) = v32-10v3-12v3+120
<=> 0,5.2v3 = v32-22v3+120
<=> v32-23v3+120 = 0 (v3 > 12)
Giải phương trình ta được 2 nghiệm :
v3 = 8 km/h (loại)
v3 = 15 km/h (nhận)
Vậy vận tốc của người thứ ba là 15 km/h