Bài 1: Nguyên hàm

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

a) Giải thích tại sao \(\int0dx=C\) và \(\int1dx=x+C\).

b) Tìm đạo hàm của hàm số \(F\left(x\right)=\dfrac{x^{\alpha+1}}{\alpha+1}\left(\alpha\ne-1\right)\). Từ đó, tìm \(\int x^{\alpha}dx\).

datcoder
29 tháng 10 lúc 22:52

a) Do \(C' = 0\) nên hàm số \(F\left( x \right) = C\) là một nguyên hàm của hàm số \(f\left( x \right) = 0\). Như vậy \(\int {0dx = C} \).

Do \(x' = 1\) nên hàm số \(F\left( x \right) = x\) là một nguyên hàm của hàm số \(f\left( x \right) = 1\). Như vậy \(\int {1dx = x + C} \).

b) Ta có \(F'\left( x \right) = \left( {\frac{{{x^{\alpha  + 1}}}}{{\alpha  + 1}}} \right)' = \frac{{\left( {\alpha  + 1} \right){x^\alpha }}}{{\alpha  + 1}} = {x^\alpha }\). Vậy ta có \(F\left( x \right) = \frac{{{x^{\alpha  + 1}}}}{{\alpha  + 1}}\) \(\left( {\alpha  \ne  - 1} \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^\alpha }\). Do đó \(\int {{x^\alpha }dx}  = \frac{{{x^{\alpha  + 1}}}}{{\alpha  + 1}} + C\).