\(a.\) \(\left(x+3\right)^4+\left(x+5\right)^4=16\) \(\left(1\right)\)
Đặt \(y=x+4\), khi đó, phương trình \(\left(1\right)\) trở thành:
\(\left(y-1\right)^4+\left(y+1\right)^4=16\)
\(\Leftrightarrow\) \(y^4-4y^3+6y^2-14y+1+y^4+4y^3+6y^2+14y+1=16\)
\(\Leftrightarrow\) \(2y^4+12y^2+2=16\)
\(\Leftrightarrow\) \(y^4+6y^2+1=8\)
\(\Leftrightarrow\) \(y^4+6y^2-7=0\)
\(\Leftrightarrow\) \(\left(y^2-1\right)\left(y^2+7\right)=0\) \(\left(1'\right)\)
Vì \(y^2+7>0\) với mọi \(y\) (vì \(y^2\ge0\) ) nên từ \(\left(1'\right)\), suy ra \(y^2-1=0\), hay \(y^2=1\) \(\Leftrightarrow\) \(^{y=1}_{y=-1}\)
Do đó, ta tìm được \(x_1=-3\) hoặc \(x_2=-5\)
Vậy, \(S=\left\{-3;-5\right\}\)