Cho hai điểm B,C cố định thuộc đường tròn tâm O cố định. A di động trên cung lớn BC dao cho tam giác ABC nhọn. Các đường cao AK, BE, CF đồng quy tại H. AH cắt đường tròn tâm O tại M
1) Chứng minh tứ giác BCEF nội tiếp
2) Chứng minh AE.AC=AF.AB và BC là trung trực của MH
3) Chứng minh H là tâm đường tròn nội tiếp tam giác EFK. Khi A di động nhưng bán kính đường trong ngoại tiếp tam giác AEF không đổi