Tính \(Q=1\cdot100+2\cdot99+3\cdot98+4\cdot97+.....+98\cdot3+99\cdot2+100\cdot1\)
tính:\(\frac{1\cdot98+2\cdot97+3\cdot96+...+97\cdot2+98\cdot1}{1\cdot2+2\cdot3+3\cdot4+...+99\cdot100}\)
Giúp mình nhé mình đang cần gấp
\(\frac{1\cdot98+2\cdot97+3\cdot96+...+96\cdot3+97\cdot2+98\cdot1}{1\cdot2+2\cdot3+3\cdot4+...+96\cdot97+97\cdot98+98\cdot99}\)
\(\frac{1\cdot98+2\cdot97+3\cdot96+...+98\cdot1}{1\cdot2+2\cdot3+3\cdot4+...+98\cdot99}\)
tính
\(\frac{1\cdot98+2\cdot97+3\cdot96+...+96\cdot3+97\cdot2+98\cdot1}{1\cdot2+2\cdot3+3\cdot4+...+96\cdot97+97\cdot98+98\cdot99}\)
ai đó giúp mk mha mk sẽ tick cho người giúp mk làm ra đầu tiên
Tính :
\(A=\frac{1\cdot98+2\cdot97+3\cdot96+......+98\cdot1}{1\cdot2+2\cdot3+3\cdot4+......+98\cdot99}\)
\(B=\frac{100-\left(1+\frac{1}{2}+\frac{1}{3}+..........+\frac{1}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+.........+\frac{99}{100}}\)
Tính nhanh:
C=\(\frac{1}{100}-\frac{1}{100\cdot99}-\frac{1}{99\cdot98}-\frac{1}{98\cdot97}-...-\frac{1}{3\cdot2}-\frac{1}{2\cdot1}\)
bài này dễ lắm,mình giải đây:
C = \(\frac{1}{100}\)- \(\frac{1}{100.99}\)-\(\frac{1}{99.98}\)\(\frac{1}{98.97}\)- ... - \(\frac{1}{3.2}\)- \(\frac{1}{2.1}\)
C = \(\frac{-1}{1.2}\)+ \(\frac{-1}{2.3}\) + ... +\(\frac{-1}{98.99}\)+ \(\frac{1}{99.100}\)+ \(\frac{1}{100}\)
C = \(\frac{-1}{1}\)- \(\frac{-1}{2}\)
Mình bận rồi , phần sau tự làm nha.
Tính :
\(\dfrac{1}{100\cdot99}-\dfrac{1}{99\cdot98}-\dfrac{1}{98\cdot97}-...-\dfrac{1}{3\cdot2}-\dfrac{1}{2\cdot1}\)
\(A=\dfrac{1}{99.100}-\dfrac{1}{98.99}-....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\\ =-\left(-\dfrac{1}{99.100}+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{98.99}\right)\\ =-\left(-\dfrac{1}{99.100}+\dfrac{98}{99}\right)\\ =\dfrac{1}{99.100}-\dfrac{98}{99}\\ =\dfrac{1}{99}\left(\dfrac{1}{100}-98\right)=\dfrac{-9799}{9900}\)
Tính nhanh:
\(C=\dfrac{1}{100}-\dfrac{1}{100\cdot99}-\dfrac{1}{99\cdot98}-\dfrac{1}{98\cdot97}-...-\dfrac{1}{3\cdot2}-\dfrac{1}{2\cdot1}\)
\(C=\dfrac{1}{100}-\dfrac{1}{100\cdot99}-\dfrac{1}{99\cdot98}-\dfrac{1}{98\cdot97}-...-\dfrac{1}{3\cdot2}-\dfrac{1}{2\cdot1}\)
\(C=\dfrac{1}{100}-\left(\dfrac{1}{2\cdot1}+\dfrac{1}{3\cdot2}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\right)\)
\(C=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(C=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)
\(C=\dfrac{1}{100}-\dfrac{99}{100}=\dfrac{-98}{100}=-\dfrac{49}{50}\)
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\frac{99}{100}\)
\(C=-\frac{98}{100}=-\frac{49}{50}\)
tính
\(\frac{1}{100\cdot99}\)-\(\frac{1}{99\cdot98}-\frac{1}{98\cdot97}-...-\frac{1}{3\cdot2}-\frac{1}{2\cdot1}\)