Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
loancute
Xem chi tiết
Bảo Bảo
Xem chi tiết
bolyl vc
9 tháng 3 2016 lúc 20:41

SORRY LỘN

võ dương thu hà
Xem chi tiết
Trần Tấn Sang g
Xem chi tiết
Xem chi tiết
Dũng
22 tháng 10 2019 lúc 22:28

Làm hơi tắt nhé

Nếu \(y=0\Rightarrow x^2=65\Rightarrow x\notin Z\)Nếu \(y>1\Rightarrow x^2+y^3-3y^2=65-3y\Leftrightarrow x^2+\left(y^3-3y^2+3y-1\right)=64\Leftrightarrow x^2-\left(y-1\right)^3=64\)Mà \(x;y-1\in N;64=0^2+4^3=8^2+0^3\)\(Th1:\hept{\begin{cases}x=0\\y-1=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)\(Th2:\hept{\begin{cases}x=8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=1\end{cases}}}\)Thử lại ta có nghiệm nguyên là : \(\left(0;5\right),\left(8;1\right)\)
Khách vãng lai đã xóa
Vũ Tiến Manh
22 tháng 10 2019 lúc 22:31

<=> x2  = 64 - (y-1)3 \(\ge0< =>4\ge y-1< =>y\le5.\)

y=5 => x=0 (thỏa mãn); y=4 => x2 = 37 (loại); y=3 => x2 =56 (loại); y= 2 => x2 = 63 loại; y=1 => x= 8; y=0 => x= 65 loại

vậy các nghiệm (x;y) = (0;5); (1;8)

Khách vãng lai đã xóa

Vũ Tiến Manh : Bạn làm sai rồi nhé cặp thứ hai là ( 8;1) chứ ko phải ( 1;8)

Khách vãng lai đã xóa
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Xuân Thành
29 tháng 8 2023 lúc 12:00

\(y^2=-2\left(x^6-x^3y-32\right)\)

\(\Leftrightarrow2x^6-2x^3y+y^2=64\)

\(\Leftrightarrow4x^6-4x^3y+2y^2=128\)

\(\Leftrightarrow\left(2x^3-y\right)^2+y^2=128\)

Áp dụng bất đẳng thức sau: \(A^2+B^2\ge\dfrac{\left(A+B\right)^2}{2}\), ta có:

\(\left(2x^3-y\right)^2+y^2\ge\dfrac{\left(2x^3-y+y\right)^2}{2}=2x^6\)

\(\Leftrightarrow128\ge2x^6\Leftrightarrow x^6\le64\)

\(\Leftrightarrow-2\le x^2\le2\)

Vậy \(x\in\left\{-2;-1;0;1;2\right\}\)

Tiếng anh123456
Xem chi tiết
Thịnh Nguyễn Đức
Xem chi tiết
pham trung thanh
10 tháng 10 2017 lúc 19:02

\(2x^6+y^2-2x^3y=320\)

\(\Leftrightarrow x^6+\left(x^6-2x^3y+y^2\right)=320\)

\(\Leftrightarrow x^6+\left(x^3-y\right)^2=320\)

\(\Rightarrow x^6\le320\)

\(x\in Z\)

\(\Rightarrow x^6=64;1;0\)

Xét từng trường hợp, bạn tìm ra được\(x^6=64\)thõa mãn

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

+ x=2

=>y=-8;24

+x=-2

=>y=8;-24

Vậy\(\left(x;y\right)=\left(2;-8\right);\left(2;24\right);\left(-2;8\right);\left(-2;-24\right)\)

Lê Minh Thuận
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 1 lúc 21:59

\(\Leftrightarrow4x^2-12xy+12y^2=12y\)

\(\Leftrightarrow\left(2x-3y\right)^2=12y-3y^2\)

Do \(\left(2x-3y\right)^2\ge0;\forall x;y\Rightarrow12y-3y^2\ge0\)

\(\Rightarrow y^2-4y+4\le4\)

\(\Rightarrow\left(y-2\right)^2\le4\)

\(\Rightarrow\left[{}\begin{matrix}\left(y-2\right)^2=0\\\left(y-2\right)^2=1\\\left(y-2\right)^2=4\end{matrix}\right.\)  \(\Rightarrow y=\left\{0;1;2;3;4\right\}\)

Lần lượt thế vào pt ban đầu ta được các cặp nghiệm:

\(\left(x;y\right)=\left(0;0\right);\left(0;1\right);\left(3;1\right);\left(3;3\right);\left(6;3\right);\left(6;4\right)\)