Tìm nghiệm của phương trình
4x(y+2)-3y=2
Cho phương trình: \(x^2-3y^2+2xy-2x-10y+4\)
a) Tìm nghiệm \(\left(x;y\right)\) của phương trình thỏa mãn: \(x^2+y^2=10\)
b) Tìm nghiệm nguyên của phương trình đã cho
Tìm nghiệm nguyên của phương trình: x^2 +y^2 -8x+3y=-18
1. Tìm nghiệm nguyên của phương trình : x^2 + ( x+ 1)^2 = y^4 + (y+1)^4
2.tìm ngiệm nguyên của phương trình : x^2 - 3y^2 =17
Tìm nghiệm nguyên của phương trình
\(x^2+x=y^4+y^3+y^2+y\)
2 Tìm nghiệm nguyên của phương trình :
\(3x^2+4y^2+6x+3y-4=0\)
Tìm nghiệm tự nhiên của phương trình \(x^2+y^3-3y^2=65-3y\)
Làm hơi tắt nhé
Nếu \(y=0\Rightarrow x^2=65\Rightarrow x\notin Z\)Nếu \(y>1\Rightarrow x^2+y^3-3y^2=65-3y\Leftrightarrow x^2+\left(y^3-3y^2+3y-1\right)=64\Leftrightarrow x^2-\left(y-1\right)^3=64\)Mà \(x;y-1\in N;64=0^2+4^3=8^2+0^3\)\(Th1:\hept{\begin{cases}x=0\\y-1=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)\(Th2:\hept{\begin{cases}x=8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=1\end{cases}}}\)Thử lại ta có nghiệm nguyên là : \(\left(0;5\right),\left(8;1\right)\)<=> x2 = 64 - (y-1)3 \(\ge0< =>4\ge y-1< =>y\le5.\)
y=5 => x=0 (thỏa mãn); y=4 => x2 = 37 (loại); y=3 => x2 =56 (loại); y= 2 => x2 = 63 loại; y=1 => x= 8; y=0 => x= 65 loại
vậy các nghiệm (x;y) = (0;5); (1;8)
Vũ Tiến Manh : Bạn làm sai rồi nhé cặp thứ hai là ( 8;1) chứ ko phải ( 1;8)
Tìm nghiệm nguyên của phương trình: \(y^2=-2\left(x^6-x^3y-32\right)\)
\(y^2=-2\left(x^6-x^3y-32\right)\)
\(\Leftrightarrow2x^6-2x^3y+y^2=64\)
\(\Leftrightarrow4x^6-4x^3y+2y^2=128\)
\(\Leftrightarrow\left(2x^3-y\right)^2+y^2=128\)
Áp dụng bất đẳng thức sau: \(A^2+B^2\ge\dfrac{\left(A+B\right)^2}{2}\), ta có:
\(\left(2x^3-y\right)^2+y^2\ge\dfrac{\left(2x^3-y+y\right)^2}{2}=2x^6\)
\(\Leftrightarrow128\ge2x^6\Leftrightarrow x^6\le64\)
\(\Leftrightarrow-2\le x^2\le2\)
Vậy \(x\in\left\{-2;-1;0;1;2\right\}\)
\(2x-y+3^2=3\left(x-3y-y^2+2\right)\)
tìm nghiệm nguyên của phương trính : 2x^6 +Y^2 -2X^3Y=320
\(2x^6+y^2-2x^3y=320\)
\(\Leftrightarrow x^6+\left(x^6-2x^3y+y^2\right)=320\)
\(\Leftrightarrow x^6+\left(x^3-y\right)^2=320\)
\(\Rightarrow x^6\le320\)
Mà\(x\in Z\)
\(\Rightarrow x^6=64;1;0\)
Xét từng trường hợp, bạn tìm ra được\(x^6=64\)thõa mãn
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
+ x=2
=>y=-8;24
+x=-2
=>y=8;-24
Vậy\(\left(x;y\right)=\left(2;-8\right);\left(2;24\right);\left(-2;8\right);\left(-2;-24\right)\)
Tìm nghiệm nguyên của phương trình x^2-3xy+3y^2=3y
\(\Leftrightarrow4x^2-12xy+12y^2=12y\)
\(\Leftrightarrow\left(2x-3y\right)^2=12y-3y^2\)
Do \(\left(2x-3y\right)^2\ge0;\forall x;y\Rightarrow12y-3y^2\ge0\)
\(\Rightarrow y^2-4y+4\le4\)
\(\Rightarrow\left(y-2\right)^2\le4\)
\(\Rightarrow\left[{}\begin{matrix}\left(y-2\right)^2=0\\\left(y-2\right)^2=1\\\left(y-2\right)^2=4\end{matrix}\right.\) \(\Rightarrow y=\left\{0;1;2;3;4\right\}\)
Lần lượt thế vào pt ban đầu ta được các cặp nghiệm:
\(\left(x;y\right)=\left(0;0\right);\left(0;1\right);\left(3;1\right);\left(3;3\right);\left(6;3\right);\left(6;4\right)\)