Thực hiện phép tính
(1+2+3+...+2010).(1+22+33+...+20102010+20112011).(17017-7.11.13.17)
Thực hiện phép tính
(1+2+3+4+.....+2010)*(1+2^2+3^3+......+2010^2010+2011^2011)*(17017-7*11*13*170)
(1 + 2 + 3 + 4 + ... + 2010).(1 + 22 + 33 + ... + 20102010 + 20112011).(170170 - 7.11.13.170)
= (1 + 2 + 3 + 4 + ... + 2010).(1 + 22 + 33 + ... + 20102010 + 20112011).(170170 - 170170)
= (1 + 2 + 3 + 4 + ... + 2010).(1 + 22 + 33 + ... + 20102010 + 20112011). 0
= 0
Tìm X:
\(\left(\frac{20102010}{20112011}+\frac{20122012}{20112011}\right)\)x X - 1 = 2011
\(\frac{20102010}{20112011}=\frac{2010}{2011}\)
\(\frac{20122012}{20112011}=\frac{2012}{2011}\)
\(\left(\frac{2010}{2011}+\frac{2012}{2011}\right).x-1=2011\)
\(\frac{4022}{2011}.x-1=2011\)
\(2.x-1=2011\)
\(2.x=2011+1\)
\(2.x=2012\)
\(x=2012:2\)
\(x=1006\)
Thực hiện phép tính (tính nhanh nếu có thể)
a)3 . 52 + 15 . 22 - 26 : 2
b)53. 2 - 100 : 4 + 23. 5
c)62 : 9 + 50 . 2 - 33 . 33
d)32 . 5 + 23 . 10 - 81 : 3
e)513 : 510 - 25 . 22
f)20 : 22 + 59 : 58
a) \(3.5^2+15.2^2-26\div2\)
= 3.25 + 15.4 - 13
= 75 + 60 - 13
= 135 - 13
= 122
b) \(5^3.2-100\div4+2^3.5\)
= 125.2 - 25 + 8.5
= 250 - 25 + 40
= 225 + 40
= 265
c)\(6^2\div9+50.2-3^3.33\)
= 36 : 9 + 100 - 9.33
= 4 + 100 - 297
= 104 - 297
= -193
d)\(3^2.5+2^3.10-81\div3\)
= 9.5 + 8.10 - 27
= 45 + 80 - 27
= 125 - 27
= 98
e) \(5^{13}\div5^{10}-25.2^2\)
= 53 - 25.4
= 125 - 100
= 25
f) \(20\div2^2+5^9\div5^8\)
= 20 : 4 + 5
= 5 + 5
= 10
Thực hiện phép tính
-1-(1+2)-(1+2+3)-...-(1+2+3+...+2009+2010)/1.2+2.3+3.4+...+2010.2011
Tính nhanh:
a,1/2009+2/2009+3/2009+......2008/2009
b,2010*2010*20092009-2009*2009*20102010/2009*20052005
a, \(\frac{1}{2009}+\frac{2}{2009}+...+\frac{2008}{2009}\\ \frac{\left(1+2008\right)\cdot2008\div2}{2009}=\frac{2017036}{2009}\)
Thực hiện phép tính: A = 33(1-2/3)(1-2/5)...(1-2/99)
A=\(33.\dfrac{3-2}{3}.\dfrac{5-2}{5}....\dfrac{99-2}{99}\)
A=\(33.\dfrac{1}{3}.\dfrac{3}{5}.\dfrac{5}{7}...\dfrac{95}{97}.\dfrac{97}{99}\)
A=\(33.\dfrac{1}{99}=\dfrac{1}{3}\)
Thực hiện phép tính (1/2+1/3+1/4+1/5+1/6+...+1/2012)/(2011/1+2010/2+2009/3+...+1/2011)
Thực hiện phép tính sau:
a) 2010:(-5)+400-1; b)2/3+3/4.(-4/9); c) (1-2/3-1/4).(4/5-3/4)^2
\(a,2010:\left(-5\right)+400-1\\ =-402+400-1\\ =-3\\ b,\dfrac{2}{3}+\dfrac{3}{4}.\left(-\dfrac{4}{9}\right)\\ =\dfrac{2}{3}-\dfrac{1}{3}\\ =\dfrac{1}{3}\\ c,\left(1-\dfrac{2}{3}-\dfrac{1}{4}\right)\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2\\ =\dfrac{1}{12}.\left(\dfrac{1}{20}\right)^2\\ =\dfrac{1}{12}.\dfrac{1}{400}\\ =\dfrac{1}{4800}\)
a) \(2010:\left(-5\right)+400-1=-400+400-1=-1\)
b) \(\dfrac{2}{3}+\dfrac{3}{4}\cdot\dfrac{-4}{9}=\dfrac{2}{3}+\dfrac{-1}{3}=\dfrac{1}{3}\)
c) \(\left(1-\dfrac{2}{3}-\dfrac{1}{4}\right)\cdot\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2=\dfrac{1}{12}\cdot\dfrac{1}{400}=\dfrac{1}{4800}\)
Thực hiện phép tính
S=\(2^{2010}-2^{2009}-2^{2008}...-2-1\)
\(S=-\left(1+2+...+2^{2009}+2^{2010}\right)\)
\(-2S=2\left(1+2+...+2^{2009}+2^{2010}\right)\)
\(\Rightarrow-2S+S=-S=2+2^2+...+2^{2010}+2^{2011}-1-2-...-2^{2009}-2^{2010}\)
\(-S=2^{2011}-1\Rightarrow S=1-2^{2011}\)
S=22010 - 22009 - 22008 -...-2-1
=>2S=2 x 22010 - 2 x 22009 - 2 x 22008 -...-2 x 2 -2 x 1
2S=22011 - 22010 - 22009 - ... - 22 -2
=>S=1-22011