cmr nếu 3a+2b chia hết cho 17 thi 10a +b chia hết cho 17(a,b nguyên)
CMR nếu 3a+2b chia hết cho 17 thì 10a+b chia hết cho 17
Chứng minh rằng:
a) Nếu 3a + 2b chia hết cho 17 thì 10a + b chia hết cho 17
b) Nếu a - 5b chia hết cho 17 thì 10a + b chia hết cho 17
Nếu 3a + 2b chia hết cho 17 thì 10a + b chia hết cho 17 và ngược lại.
Nếu a - 5b chia hết cho 17 thì 10a + b chia hết cho 17 và ngược lại.
Cho 3a+2b chia hết cho 17( a,b thuộc N). CMR 10a+b chia hết cho 17
Cho 3a+2b chia hết cho 17. CMR 10a+b chia hết cho 17
\(\left(3a+2b\right)⋮17\Leftrightarrow9\left(3a+2b\right)⋮17\Leftrightarrow\left(27a-17a+18b-17b\right)⋮17\)
\(\Leftrightarrow\left(10a+b\right)⋮17\).
Cho 3a + 2b chia hết cho 17(a, b thuộc N)
CMR: 10a + b chia hết cho 17
Vì 3a + 2b chia hết cho 17
=> 9(3a + 2b) chia hết cho 17 (1)
17 chia hết cho 17 => 17a chia hết cho 17 (2)
17b chia hết cho 17 (3)
Từ (1) (2) và (3) => 9(3a + 2b) - 17a - 17 b chia hết cho 17
=> 27a + 18b - 17a - 17b chia hết cho 17
=> 10a + b chia hết cho 17
cho biết 3a + 2b chia hết cho 17 (a,b thuộc N) CMR : 10a + b chia hết cho 17
bài này áp dụng rất nhiều thứ , rất phức tạp
gợi ý : bạn tìm số nào nhân với 3a + 2b rùi trừ di bn dó là ra cái cần chứng minh
17a:17
=> 17a+3a+2b:17
=> 20a+2b:17
=> 2(10a+b):17
=> 10a+b:17
Nếu 3a + 2b chia hết cho 17 thì 10a + b chia hết cho 17.
\(3a+2b⋮17\\ \Rightarrow\left\{{}\begin{matrix}3a⋮17\\2b⋮17\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a⋮17\\b⋮17\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}10a⋮17\\b⋮17\end{matrix}\right.\\ \Rightarrow10a+b⋮17\)
cmr
2x+3y chia hết cho 17 thì 9x+5y chia hết cho 17
a+4b chia hết cho 13 thì 10a+b chia hết cho 13
3a+2b chia hết cho 17 thì 10a+b chia hết cho 17
a-5b chia hết cho 17 thì 10a+b chia hết cho 17
m+4n chia hết cho 13 thì 10m+n chia hết cho 13