Chứng tỏ 1007.1008.1009...2010.2011.2012 chia hết cho 2^1006
a) Tìm số tự nhiên n sao cho n2 + n + 2011 chia hết cho 2012.
b) Chứng tỏ: 1007.1008.1009. ... .2010.2011.2012 chia hết cho 21006.
giải cả bài ra mink tick cho.
Giả sử:\(n^2+n+2011⋮2012\)
\(\Rightarrow\left(n^2+n-1\right)+2012⋮2012\)
Vì \(2012⋮2012\Rightarrow n^2+n-1⋮2012\)
\(\Rightarrow n.\left(n+1\right)-1⋮2012\)
Vì \(\hept{\begin{cases}n.\left(n+1\right)⋮2\Rightarrow n.\left(n+1\right)-1⋮̸\\2012⋮2\end{cases}}2\)
\(\Rightarrow\)Giả thiết là sai
Vậy không tìm đc STN n sao cho \(n^2+n-1⋮2012\)
a) Tìm số tự nhiên n sao cho:\(n^2+n+2011⋮2012\)
b) Chứng tỏ: \(1007.1008.1009.....2010.2011.2012⋮2^{1006}\)
giải cả bài ra, mình mới tick cho
Chứng tỏ:
a) A= 3^1 + 3^3 + 3^5 +...+ 3^2011 + 3^2013 + 3^2015 chia hết cho 70
b) C= 5 + 5^2 + 5^3 +...+ 5^1006 chia hết cho 126
Mình cần gấp. Cần 1 bạn giải chi tiết giúp mình. Mình sẽ tick cho bạn đó
chứng tỏ rằng : a=10! + 1.3.5...9 chia hết cho 5
chứng tỏ rằng : b=10! + 1.3.5...9 + 2009 chia hết cho 2
chứng tỏ rằng : c= 17^17 + 13^13 chia hết cho 2 và 5
chứng tỏ rằng : d= 17^17 - 13^13 chia hết cho 2 nhưng ko chia hết cho 5
A = 3 + 3^2+ 3^3 + 3^3 + ... + 3^132
a, chứng tỏ A chia hết cho 40
b, chứng tỏ A chia hết cho 39
c, chứng tỏ A chia hết cho 120
a: A=3(1+3+3^2+3^3)+...+3^129(1+3+3^2+3^3)
=40(3+...+3^129) chia hết cho 40
b: A=(3+3^2+3^3)+....+3^129(3+3^2+3^3)
=39(1+...+3^129) chia hết cho 39
c: A chia hết cho 40
A chia hết cho 3
=>A chia hết cho BCNN(40;3)=120
a, chứng tỏ ab(a+ b) chia hết cho 2
b, chứng tỏ ab+ ba chia hết cho 11
c , chứng tỏ aaa chia hết cho 37
d , chứng tot aaabbb chia hết cho 37
e, ab- ba chia hết cho 9 với a> b
chứng minh
A = 1+3+3^2+3^3+...3^11 chứng tỏ rằng chia hết cho 13
B = 3+4+2^2+2^3+....+2^30 chứng tỏ rằng chia hết cho 11
C = 3^1000-1 chứng tỏ rằng chia hết cho 4
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
Chứng tỏ A=1005/1006+1006/1007+1007/1008+1008/1005
các bạn ơi giúp mik vs !!!!!!!!!!!!!!
Cho 4 số a,b,c,d. Khi chia cho 7 thì số dư lần lượt là 6,4,3,2:
Chứng tỏ b+ c chia hết cho 7
Chúng tỏ a+b-c chia hết cho 7
Chứng tỏ a-b-c chia hết cho 7
Chứng tỏ a+2.d chia hết cho 7
Chứng tỏ a+b+c+d chia 7 dư 1
a, b : 7 dư 4 ; c chia 7 dư 3 mà 4 + 3 = 7 chia hết cho 7
=> b+c chia hết cho 7
b, ( tương tự dựa vào đó mà lm nhé mày ) biết chưa quỷ cái