cmr từ hệ thức a+b/a-b=c+d/c-d ta suy ra hệ thức a/b=c/d
CMR từ hệ thức \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\) ta có hệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
Ta có: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Leftrightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{a+a+b-b}{c+c+d-d}=\dfrac{2a}{2c}=\dfrac{a}{c}_{\left(1\right)}.\)
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b-a+b}{c+d-c+d}=\dfrac{a-a+b+b}{c-c+d+d}=\dfrac{2b}{2d}=\dfrac{b}{d}_{\left(2\right)}.\)
Từ \(_{\left(1\right)+\left(2\right)}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\) (t/c tỉ lệ thức).
\(\Rightarrowđpcm.\)
a=b*k
c=d*k
thì b*k+b/b*k-b=b*(k+1)/b*(k-1)=k+1/k-1
thì d*k+d/d*k-d=d*(k+1)/d*(k-1)=k+1/k-1
nen suy ra a+b/a-b=c+d/c-d
CMR từ tỉ lệ thức a/b = c/d (a - b # 0, c - d # 0) ta có thể suy ra tỉ lệ thức a + b / a - b = c + d / c - d
CMR: Từ tỉ lệ thức a/b=c/d (b+d khác 0)ta suy ra a/b=a+c/b+d
Đặt \(\frac{a}{b}=\frac{c}{d}=k\) (1) => a = bk ; c = dk . Thay vào \(\frac{a+c}{b+d}\) ta được :
\(\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\) (2)
Từ (1) ; (2) => \(\frac{a}{b}=\frac{a+c}{b+d}\) ( đpcm )
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{a+c}{b+d}\)
\(\Rightarrow\) đpcm.
CMR từ tỷ lệ thức a\b=c\d(với b+d khác 0) Ta suy ra được a\b=a+c\b+d
Ta có :
\(\frac{a}{b}=\frac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(b+d≠0\right)\)
=> đpcm
Đặt (1) => a = bk ; c = dk . Thay vào ta được :
(2)
Từ (1) ; (2) => ( đpcm )
CMR: từ hệ thức :\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
ta có hệ thức \(\frac{a}{b}=\frac{c}{d}\)
a+b/a-b=c+d/c-d suy ra a+b/c+d=a-b/c-d.mà a+b/c+d=a/c=b/d hay a/b=c/d. vậy a/b=c/d( đ.f.c.m)
CM từ hệ thức a+b/a-b=c+d/c-d ta có hệ thức: a/b=c/d
chứng minh rằng từ hệ thức a+b/a-b=c+d/c-d ta có hệ thức a/b=c/d
Ta có: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Leftrightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
\(\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
Ta có:
\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{a+b-a+b}{c+d-c+d}\\ =\dfrac{2a}{2c}=\dfrac{2b}{2d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\rightarrow\) đpcm
Chúc bạn học tốt!!!
Nếu:
\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
\(\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)
\(\Leftrightarrow a\left(c-d\right)+b\left(c-d\right)=c\left(a-b\right)+d\left(a-b\right)\)
\(\Leftrightarrow ac-ad+bc-bd=ac-bc+ad-bd\)
\(-ad+bc-bd=-bc+bc-bd\)
\(-ad=-bc\)
\(ad=bc\)
Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)
\(ad=bc\Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)
a) chứng minh rằng từ tỉ lệ thức a/b=c/d ta suy ra a+b/b=c+d/d
b) ngược lại từ tỉ lệ thức a+b/b=c=d/d ta suy ra d/b=c/d
`Answer:`
a. Ta đặt \(\hept{\begin{cases}k=\frac{a}{b}=\frac{c}{d}\\bk=a\\dk=c\end{cases}}\)
\(\Rightarrow\frac{a+b}{b}=\frac{b+bk}{b}=\frac{\left(k+1\right).b}{b}=k+1\left(1\right)\)
\(\Rightarrow\frac{c+d}{d}=\frac{d+dk}{d}=\frac{\left(k+1\right).d}{d}=k+1\left(2\right)\)
Từ `(1)(2)=>\frac{a+b}{b}=\frac{c+d}{d}`
Chứng minh rằng từ hệ thức a+b/a-b=c+d/c-d ta có hệ thức : a/b=c/d