Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Thùy Linh
Xem chi tiết
Bùi Xuân Mai
Xem chi tiết
Nguyen Dang
Xem chi tiết
Akai Haruma
17 tháng 8 lúc 10:49

Lời giải:

Vì $\frac{a}{b}$ là phân số chưa tối giản nên $a,b$ còn có thể chia hết cho chung một số lớn hơn $1$.

Gọi số đó là $d$.

Ta có: $a\vdots d; b\vdots d\Rightarrow 2a\vdots a; a-2b\vdots d$

$\Rightarrow \frac{2a}{a-2b}$ là phân số không tối giản. 

Phạm Ngọc Minh Châu
Xem chi tiết
Lê Thị Diệu Hiền
Xem chi tiết
Cô Hoàng Huyền
6 tháng 2 2018 lúc 11:23

Do \(\frac{a}{b}\) là một phân số chưa tối giản nên ta có thể đặt \(\hept{\begin{cases}a=md\\b=nd\end{cases}}\left[d=\left(a;b\right);\left(m;n\right)=1\right]\)

Khi đó ta có:

a) \(\frac{a}{a-b}=\frac{md}{md-nd}=\frac{md}{\left(m-n\right)d}\) chưa là phân số tối giản  (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)

b) \(\frac{2a}{a-2b}=\frac{2md}{md-2nd}=\frac{2md}{\left(m-2n\right)d}\) chưa là phân số tối giản   (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)

Nguyễn Long Vượng
Xem chi tiết
tth_new
19 tháng 3 2018 lúc 16:24

Gọi D là UCLN (a, b). Ta kí hiệu là (a, b). Áp dụng tính chất: P/s tối giản là p/s có UCLN = 1.

Ta có: 

(a, b) = D = 1

\(\Rightarrow\frac{a}{b}=1\) 

\(\Rightarrow\frac{2a+b}{a\left(a+b\right)}=\frac{2a+b}{a}+\frac{2a+b}{a+b}\). Mà (a, b) = 1

\(\Rightarrow\frac{2a+b}{a}+\frac{2a+b}{a+b}=\frac{2a+b}{D}+\frac{2a+b}{D+b}=\frac{2a+b}{1}+\frac{2a+b}{1+b}=\frac{2a+b}{1\left(1+b\right)}=1^{\left(đpcm\right)}\)

tth_new
19 tháng 3 2018 lúc 16:34

Bạn bổ sung thêm: \(\frac{2a+b}{1\left(1+b\right)}=\frac{2a+b}{1+b}=\frac{2a}{1}=\frac{2:a}{1:a}=1^{\left(đpcm\right)}\)bổ sung thế này cho nó chắc nhé

Phạm Ngọc Minh Châu
Xem chi tiết
kaitovskudo
1 tháng 2 2016 lúc 21:35

Ta có: a/b chưa tối giản.Gọi (a;b)=d (d #1)

=>a chia hết cho d;b chia hết cho d

=>2a chia hết cho d; 2d chia hết cho d

=>2a chia hết cho d; (a-2b) chia hết cho d

=>d thuộc ƯC(2a;a-2b)

Mà d#1

=>(2a;a-2b)#1

=>2a/a-2b chưa tối giản (đpcm)

Misa Trang
28 tháng 2 2018 lúc 19:27

☺☺☺☺☺☺

Phạm Ngọc Minh Châu
Xem chi tiết
kudo shinnichi
Xem chi tiết
Phùng Minh Quân
26 tháng 4 2018 lúc 19:04

Bài làm của bạn Hà Vũ Thị Thu cũng khá đúng nhưng mình sửa lại 1 vài chỗ cho chuẩn lun nhé :) 

Giả sử \(ƯCLN\left(a,b\right)=d\) \(\left(d\inℤ;d\ne-1;0;1\right)\)

\(\Rightarrow\)\(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}\Rightarrow\hept{\begin{cases}2a⋮d\\3b⋮d\end{cases}\Rightarrow}2a-3b⋮d}\)

Vì cả tử và mẫu của phân số \(\frac{3b}{2a-3b}\) đều chia hết cho \(d\) mà \(d\ne-1;0;1\) 

Nên phân số \(\frac{3b}{2a-3b}\) rút gọn được cho \(d\) hay phân số đó chưa tối giản 

Vậy phân số \(\frac{3b}{2a-3b}\) chưa tối giản nếu \(\frac{a}{b}\) chưa tối giản 

Chúc bạn học tốt ~ 

kudo shinnichi
26 tháng 4 2018 lúc 15:26

ai nhanh minh se h cho

Hà Vũ Thị Thu
26 tháng 4 2018 lúc 15:43

               Giả sử \(ƯC\left(a,b\right)=d\left(d\in N;d>1\right)\)

\(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}\Rightarrow\left(a-b\right)⋮d\Rightarrow\hept{\begin{cases}3b⋮d\\2a-3b⋮d\end{cases}}}\)

\(\Rightarrow UC\left(3b;2a-3b\right)⋮d\).Hay phân số \(\frac{3b}{2a-3b}\)chưa tối giản