cho n là một số nguyên dương CMR tổng T= 1^2017 +2^2017+....+n^2017 chia hết cho 1+2+3+....+n
CMR luôn tồn tại STN n sao cho 5^n+1 chia hết cho 7^2018
CMR1^m+2^m+...+2017^m luôn chia hết cho 1+2+3+...+2017 với mọi m nguyên dương
M.n giúp mk zới -_-
:3 Số 'm' phải là số lẻ nhé cậu
Ta có : \(1+2+...+2017=\frac{2017.\left(2017+1\right)}{2}=2017.1009\)
Đặt \(S=\left(1^m+2^m+...+2017^m\right)\)
Ta có : \(S=\left(1^m+2017^m\right)+\left(2^m+2016^m\right)+......\)
Do m lẻ nên \(S⋮2018=1009.2⋮1009\)
Vậy \(S⋮1009\)
Mặt khác ta lại có
\(S=\left(1^m+2^m+...+2017^m\right)=\left(1^m+2016^m\right)+\left(2^m+2015^m\right)+.....+2017^m\) \(⋮2017\)
=> \(S⋮2017\)
Mà (1009,2017) = 1
=> \(S⋮2017.1009=......\)
Ashley viết ra 2017 số nguyên dương đầu tiên. Sau đó cô ấy gạch chân các số trong 2017 số đó chia hết cho 2, chai hết cho 3, chia hết cho 5. cuối cùng cô ấy tính tổng của các số trong 2017 số đó chưa được gạch chân. Nêu cách tính tổng và cho biết tổng của chúng là bao nhiêu ?
Bài 1: cho a b c d là các số nguyên dương chẵn thỏa mãn
a+b=c+d và ab-cd=-4.cmr abc chia hết cho 48
bài 2 : cmr ko tồn tại 5 số nguyên dương phân biệt sao cho tổng của 3 số bát kỳ là 1 số nguyên tố
bài 3: tim a thuộc Z+ để 2016^2017 + 2018^2019 chia hết cho (a^2 +a)(2+a)`
bài 4 tìm n thuộc n sao cho dãy n+9;2n+9;3n+9:..... ko có số chính phương.
(giải nhanh giúp mình trong tối nay nha mai mình đi học rồi rồi mình tích cho :) anigato)
Trên 1 đương tròn người ta viết 2017 số nguyên dương thỏa mãn : Với hai số a và b cạnh nhau (a>b)thì a-b=1 hoặc a-b=2 hoặc a=2b . CMR trong 2017 số được viết luôn tồn tại số chia hết cho 3.
Câu a: Tìm n thuộc Z để A=(2n+1/n+3)-n-5/n+3
Nhận giá trị nguyên
Câu b: Cho a+2b/b=b+2c/c=c+2a/a với a,b,c khác 0
Tính M=(1+a/b)(1+b/c)(1+c/a)
Câu c: a,b,c thuộc Z+ thỏa mãn :a/a+2b =b/b+2c=c/c+2a
CMR :a+b+c chia hết cho 3
Câu d: Cho xt=yz
CMR : (x-y/z-t)^2017=x^2017+y^2017/z^2017+t^2017
Ai giải dùm mình với T^T
1. Tìm các số nguyên x, y để :
x,(y-5) = -9
2. Chứng minh rằng với mọi số nguyên n thì :
a) A = (n+6).(n+7) luôn luôn chia hết cho 2
b) n2+n+2017 không chia hết cho 2
3. Cho a và b là hai số nguyên không chia hết cho 3 nhưng có cùng số dư khi chia cho 3. Chứng minh rằng hai số đó trừ 1 lại chia hết cho 3.
4. Cho A = 20+21+22+...+22017. Hỏi A có là số chính phương không? Vì sao ; A+1 có là số chính phương không?
Tìm n là số nguyên biết
1. n+(n+1)+(n+2)+(n+3)+...+2017=0
2. 2017=2017+2016+2015+...+n ( vế phải là tổng các số nguyên liên tiếp)
1)cmr nếu x;y;z là số nguyên dương thỏa mãn :\(x^2+y^2=z^2\)thì xy chia hết cho 12
2)cho các số a,b,c,d thỏa mãn a+b=c+d và \(a^2+b^2=c^2+d^2\).cmr \(a^{2017}+b^{2017}=c^{2017}+d^{2017}\)
1/ Chứng minh nó chia hết cho 3:
Nếu cả x,y đều không chia hết cho 3 thì x2, y2 chia cho 3 dư 1.
\(\Rightarrow z^2=x^2+y^2\) chia cho 3 dư 2. Mà không có số chính phương chia 3 dư 2 nên ít nhất x, y chia hết cho 3.
\(\Rightarrow xy⋮3\)
Chứng minh chia hết cho 4.
Nếu cả x, y đều chẵn thì \(xy⋮4\)
Nếu trong x, y có 1 số lẻ (giả sử là x) thì z là số lẻ
\(\Rightarrow x=2k+1;y=2m;z=2n+1\)
\(\Rightarrow4m^2=4n^2+4n+1-4k^2-4k-1=4\left(n^2+n-k^2-k\right)\)
\(\Rightarrow m^2=\left(n^2+n-k^2-k\right)\)
\(\Rightarrow m⋮2\)
\(\Rightarrow y⋮4\)
\(\Rightarrow xy⋮4\)
Với x, y đều lẻ nên z chẵn
\(\Rightarrow x^2=4m+1;y^2=4n+1;z^2=4p\)
\(\Rightarrow\)Không tồn tại x, y, z nguyên thỏa cái này
Vậy \(xy⋮4\)
Từ chứng minh trên
\(\Rightarrow xy⋮12\)
2/ \(a+b=c+d\)
\(\Leftrightarrow\left(a+b\right)^2=\left(c+d\right)^2\)
\(\Leftrightarrow2ab=2cd\)
\(\Leftrightarrow-2ab=-2cd\)
\(\Leftrightarrow\left(a-b\right)^2=\left(c-d\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=c-d\\a-b=d-c\end{cases}}\)
Kết hợp với \(a+b=c+d\)
\(\Leftrightarrow\orbr{\begin{cases}a=c\\a=d\end{cases}}\)
\(\RightarrowĐPCM\)
Cho tổng A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+\frac{2018}{2017^2+3}+...+\frac{2018}{2017^2+n}+...+\frac{2018}{2017^2+2017}\)
(A có 2017 số hạng). Chứng tỏ A không là số nguyên
A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+..........+\frac{2018}{2017^2+2017}\)
>\(\frac{2018}{2017^2+2017}+\frac{2018}{2017^2+2017}+........+\frac{2018}{2017^2+2017}\)
\(=\frac{2018}{2017^2+2017}.2017=\frac{2018.2017}{2017\left(2017+1\right)}=1\) (1)
Lại có:A<\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+1}+.........+\frac{2018}{2017^2+1}\)
\(=\frac{2018}{2017^2+1}.2017=\frac{2018.2017}{2017^2+1}=\frac{2017.\left(2017+1\right)}{2017^2+1}\)
\(=\frac{2017^2+2017}{2017^2+1}=\frac{2017^2+1+2016}{2017^2+1}=1+\frac{2016}{2017^2+1}< 2\) (2)
Từ (1) và (2) suy ra:1 < A < 2
Vậy A không phải là số nguyên
45612223698++56456+89575637259415767549846574257