Cho hình thang vuông ABCD (\(\widehat{A}=\widehat{D}\)=90) có hai đường chéo AC và BD vuông góc với nhau tại O
a) Biết AB=4cm, CD=9CM.Tính AD?
b) Cm: \(\frac{1}{AO^2}=\frac{1}{AB^2}+\frac{1}{AD^2}\)
Cho hình thang ABCD có \(\widehat{A}=\widehat{D}=90^{\bigcirc}\), hai đường chéo AC và BD vuông góc với nhau. Biết AB=4cm, CD=9cm.
a) Chứng minh hai tam giác ADB ∼ DCA.
b) Tính độ dài AD.
c) Gọi M là giao điểm của AD và BC. Tính diện tích tam giác AMB
Cho hình thang ABCD có AB//CD góc A băng 90 độ hai đường chéo AC và BD vuông góc với nhau tại O biết AB=4cm , AD=10cm .Tính AC,BD,BC và diện tích hình thang ABCD .
Xét tam giác \(ABD\)vuông tại \(A\):
\(BD^2=AB^2+AD^2\)(định lí Pythagore)
\(=4^2+10^2=116\)
\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)
Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)
Suy ra \(ABDE\)là hình bình hành.
\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):
\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)
\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)
\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)
Hạ \(BH\perp CD\).
\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)
\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)
HELP ME !!!
Cho hình thang ABCD ( \(\widehat{A}\)=\(\widehat{D}\)= \(90^o\)), đường chéo AC và BD vuông góc với nhau. CMR: \(\frac{1}{AD^2}=\frac{1}{AC^2}+\frac{1}{BD^2}\)
Cho hình thang vuông ABCD (^A=^d=90', AB < CD), hai đường chéo AC và BD vuông góc, cắt nhau tại O.
a)Chứng minh: AD2 = AB.CD
b) Cho AB=4,5 cm và CD= 8cm. Tính OA, OC và diện tích hình thang ABCD.
Cho hình thang vuông ABCD(AB//CD,\(\widehat{A}=\widehat{D}=90\)độ ) có 2 đường chéo AC vuông góc với BD. c/m rằng : \(AD=\sqrt{AB.CD}\)
Cho hình thang ABCD có \(\widehat{B}=\widehat{C}=90^o\),hai đường chéo vuông góc với nhau tại H.Biết \(AB=3\sqrt{5}cm\),\(HA=3cm\).CMR:
a/\(HA:HB:HC:HD=1:2:4:8\)
b/\(\frac{1}{AB^2}-\frac{1}{CD^2}=\frac{1}{HB^2}-\frac{1}{HC^2}\)
hình thang vuông ABCD ( \(\widehat{A}=\widehat{D}=90\)) có CD=2AB. Vẽ DH vuông góc với AC tại H. Gọi M, N lần lượt là trung điểm của CH, HD.
a/ CM N là trực tâm của tam giác ADM.
b/ CM góc BMD =90 và \(DH^2=AH.AC\).
c/ CM \(AD^2=AH.AC\).
d/ CM \(\frac{1}{DH^2}=\frac{1}{AD^2}+\frac{1}{CD^2}\)
Cho hình thang ABCD có \(\widehat{B}=\widehat{C}=90^O\). Hai đường chéo vuông góc với nhau tại H. Biết AB = \(3\sqrt{5}\) cm, HA = 3cm. Chứng minh:
a) HA:HB:HC:HD = 1:2:4:8
b) \(\dfrac{1}{AB^2}-\dfrac{1}{CD^2}=\dfrac{1}{HB^2}-\dfrac{1}{HC^2}\)
Gọi O là giao điểm đường chéo AC và BD của hình thang ABCD(AB//CD).Đường thẳng qua O song song với AB cắt AD và BC lần lượt tại M và N.
a)C/m OM=ON
b)C/m \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)
c)Biết \(S\Delta AOB=a^2,S\Delta COD=b^2.TínhSABCD\)
d)ếu \(\widehat{D}< \widehat{C}< 90\).C/m BD>AC