Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TranNgocThienThu
Xem chi tiết
Phùng Minh Quân
1 tháng 2 2018 lúc 16:00

a) Ta có :

\(\overline{ab}=3ab\)

\(\Leftrightarrow\)\(10a+b=3ab\)

\(\Leftrightarrow\)\(b=3ab-10a=a.\left(3b-10\right)\)

Ta thấy \(b=a.\left(3b-10\right)\)\(\Rightarrow\)\(b⋮a\)

Phùng Minh Quân
1 tháng 2 2018 lúc 16:08

b) Ta có :

\(10a+b=3ab\)

\(\Leftrightarrow\)\(10a+ak=3ka^2\)

\(\Leftrightarrow\)\(a.\left(10+k\right)=3ka^2\)

\(\Leftrightarrow\)\(10+k=3ak\)

\(\Leftrightarrow\)\(10=3ak-k\)

\(\Leftrightarrow\)\(10=k.\left(3a-1\right)\)

Vì \(10=k.\left(3a-1\right)\)nên \(k\inƯ\left(10\right)\)

Dung Viet Nguyen
Xem chi tiết
Dung Viet Nguyen
23 tháng 1 2018 lúc 13:40

Giải :  a) Bước 1 : Gọi d \(\in\)ƯC ( a ; b ) , ta sẽ chứng minh rằng d \(\in\)ƯC ( 7a + 5b , 4a + 3b )

Thật vậy , a và b chia hết cho d nên 7a + 5b chia hết cho d , 4a + 3b chia hết cho d .

Bước 2 : Gọi d\(\in\)ƯC ( 7a + 5b , 4a + 3b ) , ta sẽ chứng minh d' \(\in\)ƯC ( a ; b ) . 

Thật vậy , 7a + 5b và 4a + 3b chia hết cho d' nên khử b , ta được 3 ( 7a + 5b ) - 5 ( 4a + 3b ) chia hết cho d' , tức là a chia hết cho d' ; khử a ta được 7 ( 4a + 3b ) - 4 ( 7a + 5b ) chia hết cho d' , tức là b chia hết cho d' . Vậy d' \(\in\)ƯC ( a ; b ) ,

Bước 3 : Kết luận A = B 

b) Ta đã có A = B nên số lớn nhất thuộc A bằng số lớn nhất thuộc B , tức là ( a ; b ) = ( 7a + 5b , 4a + 3b ) ( ĐPCM )

TranNgocThienThu
Xem chi tiết
Thành viên
Xem chi tiết
i love hattori
23 tháng 9 2017 lúc 15:43

Xin lỗi bn Thanh Vien mk ko bít

Minh Thư
Xem chi tiết
bong
Xem chi tiết
Bée Dâu
Xem chi tiết
Ngô Tấn Đạt
16 tháng 10 2016 lúc 11:28

abab=ab.100+ab=ab.101 chia hết cho 101 nên là bội của 101 

b) aaabbb=aaa.1000+bbb=a.111.1000+b.111=111(1000a+b) chia hết cho 37 ( vì 111 chia hết cho 37) 

Lightning Farron
16 tháng 10 2016 lúc 11:30

a)\(abab=ab\cdot100+ab\cdot1=ab\cdot101\)

Vì \(101⋮101\Rightarrow ab\cdot101⋮101\Rightarrow abab⋮101\)

=>abab là bội của 101

b)\(aaabbb=111000\cdot a+b\cdot111\)

Mà \(111000⋮37\)\(111⋮37\)

\(\Rightarrow aaabbb⋮37\)

=>37 là ước aaabbb

 

Nguyễn Huy Tú
16 tháng 10 2016 lúc 11:55

a) Ta có: \(\overline{abab}=\overline{ab}.101⋮101\)

\(\Rightarrow\overline{abab}⋮101\)

b) Ta có: \(\overline{aaabbb}=a.111000+111.b=111.\left(1000.a+b\right)⋮37\) ( vì \(111⋮37\) )

\(\Rightarrow\overline{aaabbb}⋮37\)

Kang Yumy
Xem chi tiết
Ha Trang
9 tháng 11 2014 lúc 21:18

Ta có: n = 2.3.5.7.11.13. ...

Dễ thấy n chia hết cho 2 và không chia hết cho 4.

-) Giả sử n+1 = a2, ta sẽ chứng minh điều này là không thể.

Vì n chẵn nên n+1 lẻ mà n+1= anên a lẻ, giả sử a=2k+1, khi đó:

n+1=(2k+1)2 <=>n+1=4k2+4k+1 <=>n=4k2+4 chia hết cho 4, điều này không thể vì n không chi hết cho 4.

Vậy n+1 không chính phương.

-) Dễ thấy n chia hết cho 3 nên n-1 chia cho 3 sẽ dư 2 tức n=3k+2, điều này vô lý vì số chính phương có dạng 3k hoặc 3k+1.

Vậy n-1 không chính phương

(Hình như bài này của lớp 8 nha)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 9 2018 lúc 10:12

abba = 1000a + 100b + 10b + a = 1001a + 110b

         = 11(91a + 10b) ⋮ 11.