Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
oát đờ
Xem chi tiết
loancute
Xem chi tiết
Trần Minh Hoàng
20 tháng 1 2021 lúc 22:27

Ta có a < b + c; b < c + a; c < a + b nên từ a + b + c = 2 suy ra a, b, c < 1.

BĐT cần cm tương đương:

\(\left(a+b+c\right)^2+2abc< 2\left(ab+bc+ca\right)+2\)

\(\Leftrightarrow abc-\left(ab+bc+ca\right)+1< 0\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)< 0\).

Bất đẳng thức trên luôn đúng do a, b, c < 1.

Vậy ta có đpcm.

 

Kudo Shinichi
Xem chi tiết
đức minh trần
Xem chi tiết
Hoàng Hà Tiên
Xem chi tiết
Nguyễn Ngọc Lộc
8 tháng 2 2021 lúc 19:34

Ta có : \(\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(\Leftrightarrow a^2+b^2+4c^2+2ab-4bc-4ac+b^2+c^2+4a^2+2bc-4ca-4ab+c^2+a^2+4b^2+2ac-4bc-4ab=...\)

\(\Leftrightarrow6a^2+6b^2+6c^2-6\left(ab+bc+ca\right)=a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\)

\(\Leftrightarrow6a^2+6b^2+6c^2-6\left(ab+bc+ca\right)-a^2+2ab-b^2-b^2+2bc-c^2-c^2+2ca-a^2=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow a=b=c\)

<=> Tam giác đó là tam giác đều .

Vậy ...

 

 

 

 

 

 

 

 

 

Dũng Ko Quen
Xem chi tiết
Akai Haruma
16 tháng 4 2021 lúc 22:45

** Lần sau bạn lưu ý viết đề bằng công thức toán (hộp công thức nằm ở nút biểu tượng $\sum$ bên trái khung soạn thảo)

Lời giải:

a) Vì $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác ta có:

$c< a+b\Rightarrow c^2< c(a+b)$

$b< a+c\Rightarrow b^2< b(a+c)$

$a<b+c\Rightarrow a^2< a(b+c)$

$\Rightarrow a^2+b^2+c^2< c(a+b)+b(a+c)+a(b+c)$

hay $a^2+b^2+c^2< 2(ab+bc+ac)$ (đpcm)

b) 

Áp dụng BĐT Bunhiacopxky:

$\text{VT}[a(b+c-a)+b(a+c-b)+c(a+b-c)]\geq (a+b+c)^2$

$\text{VT}[2(ab+bc+ac)-(a^2+b^2+c^2)]\geq (a+b+c)^2$

$\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)-(a^2+b^2+c^2)}(*)$

Mà theo BĐT Cô-si:

$a^2+b^2+c^2\geq ab+bc+ac\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}$. Do đó:

$2(ab+bc+ac)-(a^2+b^2+c^2)=(a+b+c)^2-2(a^2+b^2+c^2)$

$\leq (a+b+c)^2-2.\frac{(a+b+c)^2}{3}=\frac{(a+b+c)^2}{3}(**)$

Từ $(*); (**)\Rightarrow \text{VT}\geq 3$ (đpcm)

Dấu "=" xảy ra khi $x=y=z$

Akai Haruma
16 tháng 4 2021 lúc 22:49

Lời giải khác của câu b

Đặt $b+c-a=x; a+c-b=y; a+b-c=z$. Theo BĐT tam giác thì $x,y,z>0$

$\Rightarrow c=\frac{x+y}{2}; a=\frac{y+z}{2}; b=\frac{x+z}{2}$

Bài toán trở thành:

Cho $x,y,z>0$. CMR $\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\geq 3$
Thật vậy:

Áp dụng BĐT Cô-si:

 \(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\geq 3\sqrt[3]{\frac{(x+y)(y+z)(x+z)}{8xyz}}\geq 3\sqrt[3]{\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}}{8xyz}}=3\)

Ta có đpcm

Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c$

ariesgirl
7 tháng 12 2021 lúc 22:24

bạn cx z luôn nha Akai Haruma

Khách vãng lai đã xóa
nguyen kim chi
Xem chi tiết
Mr Lazy
12 tháng 6 2015 lúc 20:37

Do 0 < a,b,c < 1 nên  (a - 1)(b - 1)(c - 1) < 0

hay abc < ab + bc + ca - (a + b + c) + 1 = ab + bc + ca - 1

suy ra:a+ b+ c+ 2abc < a+ b+ c2 + 2(ab + bc + ca - 1) = (a + b + c)- 2 = 2- 2 = 2

thien ty tfboys
11 tháng 6 2015 lúc 21:24

a, b, c là độ dài 3 cạnh của tgiác nên ta có: b+c > a => ab+ac > a²

 tương tự: bc+ab > b²; ca+bc > c²  

cộng lại: 2ab+2bc+2ca > a²+b²+c² (*)  

g thiết: 4 = (a+b+c)² = a²+b²+c² + 2ab+2bc+2ca > a²+b²+c² + a²+b²+c² {ad (*)}  

=> 2 > a²+b²+c² (đpcm) 

Nguyển Vũ Anh Tuấn
Xem chi tiết
mokona
29 tháng 1 2016 lúc 22:48

Kudo shinichi còn onl ko đó??

Nguyễn Vũ Anh Thư
29 tháng 1 2016 lúc 22:50

Vô danh sách bạn bè là biết mà mokona

Nguyển Vũ Anh Tuấn
30 tháng 1 2016 lúc 21:25

Đi chổ khác

 

Nguyễn Ngọc Anh
Xem chi tiết
Trần Đình Thiên
25 tháng 7 2023 lúc 20:55

Để chứng minh bất đẳng thức 1 < a/b+c+b/c+a+c/a+b < 2, ta sẽ chứng minh từng phần.

Phần 1: Chứng minh 1 < a/b+c+b/c+a+c/a+b

Ta có:
a/b + b/c + c/a > 3√(a/b * b/c * c/a) = 3√(abc/(abc)) = 3

Vậy ta có: a/b + b/c + c/a + b/a + c/b + a/c > 3 + 1 + 1 = 5

Phần 2: Chứng minh a/b+c+b/c+a+c/a+b < 2

Ta có:
a/b + b/c + c/a < a/b + b/a + b/c + c/b = (a+b)/(b+c) + (b+c)/(a+b)

Áp dụng bất đẳng thức AM-GM, ta có:
(a+b)/(b+c) + (b+c)/(a+b) ≥ 2√[(a+b)/(b+c) * (b+c)/(a+b)] = 2

Do đó ta có: a/b+c+b/c+a+c/a+b < 2

Từ đó, ta suy ra bất đẳng thức 1 < a/b+c+b/c+a+c/a+b < 2.

Darya Dutes
25 tháng 7 2023 lúc 20:58

Để chứng minh bất đẳng thức 1 < a/b+c+b/c+a+c/a+b < 2, ta sẽ chứng minh từng phần.

Phần 1: Chứng minh 1 < a/b+c+b/c+a+c/a+b

Ta có:
a/b + b/c + c/a > 3√(a/b * b/c * c/a) = 3√(abc/(abc)) = 3

Vậy ta có: a/b + b/c + c/a + b/a + c/b + a/c > 3 + 1 + 1 = 5

Phần 2: Chứng minh a/b+c+b/c+a+c/a+b < 2

Ta có:
a/b + b/c + c/a < a/b + b/a + b/c + c/b = (a+b)/(b+c) + (b+c)/(a+b)

Áp dụng bất đẳng thức AM-GM, ta có:
(a+b)/(b+c) + (b+c)/(a+b) ≥ 2√[(a+b)/(b+c) * (b+c)/(a+b)] = 2

Do đó ta có: a/b+c+b/c+a+c/a+b < 2

Từ đó, ta suy ra bất đẳng thức 1 < a/b+c+b/c+a+c/a+b < 2.