chứng minh rằng 3^2n+3-24n+37 chia hết cho 64
Chứng minh rằng:
a) 4n +15n - 1 chia hết cho 9
b) 32n+3 - 24n + 37 chia hết cho 64
c) 2n+2 x 3n + 5n -4 chia hết cho 25
1 Chứng minh rằng với mọi số tự nhiên n ta có
a) 4n +15n -1 chia hết cho 9
b) 32n+3 - 24n +37 chia hết cho 64
c) 22+n x 3n + 5n -4 chia hết cho 2
Giúp mink nka. Đề thi học kì của mình đấy. HELP ME
1 Chứng minh rằng với mọi số tự nhiên n ta có
a) 4n +15n -1 chia hết cho 9
b) 32n+3 - 24n +37 chia hết cho 64
c) 22+n x 3n + 5n -4 chia hết cho 25
AI làm nhanh và đúng nhớ đầy đủ mình mới tick . Giúp mình thank you
thu vien cua trường có khoảng trên 2000 bản sach. nếu xếp 100 bản vào một tủ thì thừa 12 bản, nếu xếp 120 bản vào tủ thì thiếu 108 bản. nếu xếp 150 bản vào một tủ thì thiếu 138 bản. hỏi thu viện có bao nhiêu bản sách? ai giải hộ với
Chứng minh rằng với mọi số tự nhiên n thì : 24n4+50n3 - n2 - 2n chia hết cho 24
kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh
vào trang http://giaoan.co/giao-an/chuyen-de-ve-ly-thuyet-toan-chia-het-7917/ tìm bài 5
Chứng minh rằng với mọi số tự nhiên n:
b) 34n + 1 + 2 chia hết cho 5
c) 24n + 1 + 3 chia hết cho 5
d) 24n + 2 + 1 chia hết cho 5
e) 92n+1 + 1 chia hết cho 10
b) 34n + 1 + 2 = 34n . 3 + 2 = (...1) . 3 + 2 = (....3) + 2 = (....5) ⋮ 5
c) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
d) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
e) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
Chứng minh rằng 22n+2 +24n + 14 chia hết cho 18 ( n thuộc N )
Chứng minh rằng 22n+2 +24n + 14 chia hết cho 18 ( n thuộc N
Bài này khó quá mình không giải trực tiếp được, thoi đi quy nạp nha:
Với \(n=0\Rightarrow2^{2n+2}+24n+14=18⋮18\)
Với \(n=1\Rightarrow2^{2n+2}+24n+14=54⋮18\)
+) Giả sử giả thiết đúng tới \(n=k,k\inℕ,n>k>2\Rightarrow2^{2k+2}+24k+14⋮18\)
+) Cần chứng minh giả thiết đúng với \(n=k+1:\)
Xét \(2^{2\left(k+1\right)+2}+24\left(k+1\right)+14⋮18\)
\(\Leftrightarrow2^{2+\left(2k+2\right)}+24k+24+14⋮18\)
\(\Leftrightarrow2^2.2^{2k+2}+24k+14+24⋮18\)
\(\Leftrightarrow\left(2^{2k+2}+24k+14\right)+3.2^{2k+2}+24⋮18\)(1)
Vì \(\left(2^{2k+2}+24k+14\right)⋮18\)nên (1)\(\Leftrightarrow3.2^{2k+2}+24⋮18\)(2)
Vì \(3.2^{2k+2}+24⋮6\)nên (2)\(\Leftrightarrow2^{2k+1}+4⋮3\)
Xét \(2^{2k+1}=\left(3-1\right)^{2k+1}\)Vì (2k+1) là số lẻ nên\(\left(3-1\right)^{2k+1}\)có dạng 3A-1 (tức là chia 3 dư 2 đấy !)
(Điều này có thể được chứng minh bằng cách xét số dư khi chia lũy thừa của 2 cho 3, còn để chứng minh chặt chẽ thì đợi lên lớp 11 học nhị thức Newton nha !!)
Vậy (2)\(\Leftrightarrow3A-1+4⋮3\Leftrightarrow3A+3⋮3\)--->đúng \(\forall k,n>k>2\)
Vậy giả thiết đúng \(\forall n\inℕ\)
Chứng minh quy nạp giống bạn Ngọc
.Giả thiêt đúng với n = 0
G/s giả thiết đúng với n
Cần chứng minh giả thiết đúng với n+1
Ta có: \(2^{2\left(n+1\right)+2}+24\left(n+1\right)+14\)
\(=2^{2n+2}.4+24n+24+14\)
\(=\left(2^{2n+2}+24n+14\right)+\left(3.2^{2n+2}+24\right)\)
Vì \(2^{2n+2}+8\equiv\left(-1\right)^{2n+2}+8\equiv9\equiv0\left(mod9\right)\)
\(\Rightarrow3.2^{2n+2}+24⋮9\) và dĩ nhiên là \(3.2^{2n+2}+24⋮2\) mà ( 2; 9) = 1
\(\Rightarrow3.2^{2n+2}+24⋮18\)
Theo điều G/s \(\left(2^{2n+2}+24n+14\right)⋮18\)
=> \(\left(2^{2n+2}+24n+14\right)+\left(3.2^{2n+2}+24\right)⋮18\)
=> \(2^{2\left(n+1\right)+2}+24\left(n+1\right)+14⋮18\)
=> giả thiết đúng với n + 1
Vậy giả thiết đúng với mọi n
bài 1 chứng minh rằng với mọi stn n
a)24n+1+3 chia hết cho 5
b)24n+2 +1 chia hết cho 5
c) 92n+1chia hết cho 10
cảm ơn mọi người nha
a) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
b) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
c) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
Chứng minh rằng 3^24n+2 chia hết cho 11