Cho tam giac ABC vuong tai A M la trung diem cua BC , ve MH vuong goc AB . Tren ia doi cua tiaMH lay diem K sao ch MK=MH
a) Cmr tam giac MHB tam giac MKC b) CMR AC = HK
c CH cat AmM tai G ia BG cat AC tai I CMR I la rung diem AC
cho tam giac nhon ABC, ve BD vuong goc AC tai D va CE vuong goc AB tai E. Cac duong thang BD va CE cat nhau tai H. Goi diem M la trung diem cua canh CB. Tren tia doi cua tia MH lay diem K sao cho MH=MK. a) chung minh: tam giac BMH=tam giac CMK, b) chung minh: CK vuong goc AC, c) ve HI vuong goc BC tai I, tren tia HI laydiem G sao cho HI=IG. Chung minh: GC=BK
Cho tam gia ABC , vuong tai A.Goi I la trung diem cua BC . Tren tia doi cua IA lay D sao cho ID=IA
a) CMR tam giac BIA=CIA
b) CMR tam giac ABC=DCB
c) CMR BD vuong goc AB
a: Xét ΔBIA và ΔCID có
IB=IC
góc BIA=góc CID
IA=ID
Do đó: ΔBIA=ΔCID
b: Xét ΔABC và ΔDCB có
AB=DC
BC chung
AC=BD
Do đó: ΔABC=ΔDCB
c: Xét tứ giác ABDC có
I là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>BD//AC
=>BD vuông góc với AB
cho tam giac abc, vuong tai a.goi I la trung diem cua BC .Tren tia doi cua IA lay D sao cho ID=IA
a)CMR tam giac BIA=CIA
b)CMR tam giac ABC=DCB
c)CMR BDvuong goc voi AB
hung nguyen em sai đề câu a) nhé, phải là tam giác BIA = tam giác CID
a) Xét tam giác BIA và tam giác CID có :
BI = IC ( gt )
BIA = CID ( đối đỉnh )
AI = DI ( gt )
=> tam giác BIA = tam giác CID ( c-g-c )
=> đpcm
b) Vì tam giác BIA = tam giác CID ( chứng minh câu a )
=> ABI = DCI ( 2 góc tương ứng ) và AB = CD ( 2 cạnh tương ứng )
=> AB // CD ( vì 2 góc trên ở vị trí so le trong )
=> BAC = ACD = 900
Chứng minh tương tự câu a) ta có tam giác BID = tam giác CIA ( c-g-c )
=> BD // AC ( tự chứng minh tương tự như trên )
=> ACD = CDB = 900
Xét tam giác ABC và tam giác DCB có :
AB = DC ( cmt )
BAC = CDB ( = 900 )
ABI = DCI ( cmt )
=> tam giác ABC = tam giác DCB ( g-c-g )
=> đpcm
c) Từ câu b ta có AB // CD
=> CDB + góc ABD = 1800 ( trong cùng phía )
mà CDB = 900 => ABD = 1800 - 900 = 900
=> AB vuông góc BD ( đpcm )
Cho tam giac ABC vuong tai A co goc B = 60° .Ve AH vuong goc voi BC tai H A/Tinh goc HAB B/Tren canh AC lay D sao cho AD=AH .Goi I la trung diem cua canh HD. C/M tam giac AHI= tam giac ADI . Tu do suy ra AI vuong goc voi HD C/Tia AI cat canh HC tai diem K .C/M tam giac AHK=tam giac ADK.Tu do suy ra AB//KD D/Tren tia doi cua tia HA lay E sao cho HE=AH.C/M H la trung diem cua BK va 3 diem D,E,K thang hang
a: \(\widehat{HAB}=90^0-60^0=30^0\)
b: Xét ΔAHI và ΔADI có
AH=AD
HI=DI
AI chung
Do đó: ΔAHI=ΔADI
Ta có: ΔAHD cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
c: Xét ΔAHK và ΔADK có
AH=AD
\(\widehat{HAK}=\widehat{DAK}\)
AK chung
Do đó: ΔAHK=ΔADK
Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)
=>DK//AB
cho tam giac abc, duong trung truc d cua canh BC tai I, d cat AC tai K. Tu K ve KH vuong AB tai H, tren tia doi cua tia HK lay diem M sao cho HM= HK. CM:
a) tam giac AMB= tam giac AKB
b) BM= KC
c) goc AMB = 2goc C
GIUP MK NHA
CAC BAN OI GIUP MINH VOI .MINH DANG CAN GAP
Cho tam giac ABC vuong tai A I la trung diem cua BC Ve Cx// AB ( Cx va AB thuoc 2 nua mt phang doi nhau bo BC ) Tren Cx lay diem M sao cho CM = AB Ve AH vuong goc voi BC tai H MK vuong goc voi BC tai K CM a) tam giac AIB = Tam giac MIC b) tam giác ABC = tam giác MCB c) AC//BM AC = BM d) CM vuông góc AC e) góc HAI = góc KMI
Cho Tam giac ABC can tai A , tren tia doi cua BC lay diem D , tren tia doi cua CB lay diem E sao cho BD = CE . Tu B ke BM vuong goc voi AD , tu C ke CN vuong goc voi AE , MB cat NC tai K
d,c/m tam giac KMN la tam giac can
d: Ta có: \(\widehat{KBC}=\widehat{MBD}\)
\(\widehat{KCB}=\widehat{NCE}\)
mà \(\widehat{MBD}=\widehat{NCE}\)
nên \(\widehat{KBC}=\widehat{KCB}\)
hay ΔKBC cân tại K
=>KB=KC
Ta có: KB+BM=KM
KC+CN=KN
mà KB=KC
và BM=CN
nên KM=KN
=>ΔKNM cân tại K
Cho tam giac abc vuong tai a. Ke ah vuong goc voi bc tai h. Tren tia doi cua tia ha lay diem d sao cho ha=hd.
a) chung minh tam giac ahd=tam giac dhc
b)tren tia dc lay diem k sao cho c la trung diem cua dk. Chung minh ak||bc
c) tu c ke duong thang song song voi ab cat ak tai m. Doan thang bm cat ac tai q. Chung minh am+cm>2mq
bai 1:cho tam giac ABC vuong tai A,phan giac AD tren canh BC lay diem H sao cho BH=BA
a)CMR:DH vuong goc BC
b)biet gocADH=110 đo.Tinh goc ABD
bai2:cho tam giac ABC co AB=AC=BC.Cac tia phan giac BD va CE cat nhau tai O.CMR:
a)BD vuong goc AC va CE vuong goc AB
b)OA=OB=OC
c)goc AOB=goc BOC=goc COA;tu do suy ra so do cua moi goc ay
bai3:cho O la mot diem cua AB.tren hai nua mat phang doi nhau bo AB ve cac tia Ax va By cung vuong goc voi AB.Lay diem M tren tia Ax,diem N tren tia By sao cho AM=BN.CMR:o la trung diem cua MN
bai 4:cho tam giac ABC vuong tai A co goc C=45 do.Ve phan giac AD.Tren tia doi cua tia AD lay diem E sao cho AE=BC.Tren tia doi cua tia CA lay diem F sao cho CF=AB.CMR:BE=BF va BE vuong goc BF
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!