Chứng tỏ \(\frac{3n+1}{n}\)là phân số tối giản cua mọi số tự nhiên
chứng tỏ phân số\(\frac{3n+2}{2n+1}\)tối giản với mọi số tự nhiên n.
gọi d=ƯCLN(3n+2;2n+1)
lập luận d = 1
kết luận\(\frac{3n+1}{2n+1}\)tối giản
Gọi \(\left(3n+2;2n+1\right)=d\)
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\frac{3n+2}{2n+1}\)là phân số tối giản với mọi STN n
Gọi d là ƯCLN\((3n+2,2n+1)\) \((d\inℕ^∗)\)
Ta có : \((3n+2)⋮d,(2n+1)⋮d\)
\(\Rightarrow\left[2(3n+2)\right]⋮d,\left[3(2n+1)\right]⋮d\)
\(\Rightarrow\left[6n+4\right]⋮d.\left[6n+3\right]⋮d\)
\(\Rightarrow\left[6n+4\right]-\left[6n+3\right]⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d\in\left\{1;-1\right\}\)
Mà \(d\inℕ^∗\)nên d = 1
Vậy : \(\frac{3n+2}{2n+1}\)là phân số tối giản \(\forall n\inℕ\)
Chứng tỏ phân số \(\frac{3n+2}{5n+3}\)tối giản với mọi số tự nhiên n.
Với n chẵn ta thấy tử số phân số trên chẵn
Mà mẫu số lẻ
Nên hiển nhiên phân số trên tối giản
Với n lẻ, làm tương tự
thế VD là phân số \(\frac{6}{9}\)thì cx tối giản à bn ?
Gọi d là \(UCLN\left(3n+2;5n+3\right)\)
\(\Rightarrow\hept{\begin{cases}3n+2\\5n+3\end{cases}⋮d}\)
\(\Rightarrow\hept{\begin{cases}5\left(3n+2\right)\\3\left(5n+3\right)\end{cases}⋮d\rightarrow\hept{\begin{cases}15n+10\\15n+9\end{cases}⋮}d}\)
\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)
=>\(1⋮d\Rightarrow d=1\)
=>p/s trên tối giản với mọi số tự nhiên n
Vậy....
Có gì chưa rõ mong mn chỉ bào thêm ạ
Vói mọi số tự nhiên n.Chứng tỏ n+1/3n+4 là phân số tối giản
Gọi d=ƯCLN(3n+4;n+1)
=>3n+4 chia hết cho d và n+1 chia hết cho d
=>3n+4-3n-3 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
Chứng tỏ rằng với mọi số tự nhiên n thì P= \(\dfrac{3n+2}{6n+5}\) là một phân số tối giản.
Gọi \(d=ƯC\left(3n+2;6n+5\right)\) với \(d\ge1;d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\6n+5⋮d\end{matrix}\right.\)
\(\Rightarrow6n+5-2\left(3n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow3n+2\) và \(6n+5\) nguyên tố cùng nhau
Hay P tối giản
Chứng tỏ phân số \(\frac{3n+2}{5n+3}\)tối giản với mọi số tự nhiên n.
giúp mik với nha.
gọi d là Ưc(3n+2; 5n+3)
\(\Leftrightarrow\)\(\frac{3n+2}{5n+3}\)=\(\frac{15n+10}{15n+9}\)
\(\Rightarrow\)d\(⋮\)1\(\Rightarrow\)d=1
vậy \(\frac{3n+2}{5n+3}\)tối giản với mọi số tự nhiên n
Ta có \(\frac{3n+2}{5n+3}\) là phân số tối giản
\(\Rightarrow\) ƯCLN (3n+2; 5n+3) = 1.
Gọi ƯCLN (3n+2; 5n+3) là d.
\(\Rightarrow\) 3n+2 \(⋮\)d ; 5n+3 \(⋮\)d
\(\Rightarrow\) 5.(3n+2) \(⋮\)d ; 3.(5n+3) \(⋮\)d
\(\Rightarrow\) 15n+10 \(⋮\)d ; 15n+9 \(⋮\)d
\(\Rightarrow\) (15n+10)-(15n+9) \(⋮\)d
\(\Rightarrow\) 15n+10-15n-9 \(⋮\)d
\(\Rightarrow\) 1 \(⋮\)d
\(\Rightarrow\) d = 1.
Vậy ƯCLN (3n+2; 5n+3) = 1 \(\Leftrightarrow\)\(\frac{3n+2}{5n+3}\)tối giản.
_Chúc bạn học tốt_
Cho phân số\(P=\frac{3n+5}{n+2}\)
Chứng tỏ P là phân số tối giản với mọi n là số tự nhiên khi UCLN ( 3n+5; n+2 ) = 1
LÀM ƠN GIÚP MÌNH VỚI !!! MÌNH CẦN CỰC KÌ KHẨN CẤP !!!
UCLN (3n+5:n+2)=1 thì hai số trên nguyên tố cùng nhau rùi .không rút gon được nữa => tối giản
Gọi d là UCLN ( 3n+5;n+2)
Ta có:\(\hept{\begin{cases}3n+5⋮d\\n+2⋮d\end{cases}}\)
\(n+2⋮d\Rightarrow3\left(n+2\right)\)
hay \(3n+6⋮d\)
ta xét hiệu: \(3n+6-\left(3n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
Vậy P là phân số tối giản với mọi n là STN khi UCLN (3n+5;n+2)=1
Chúc bạn hk tốt!!!
Gọi UWCLN(3n+5,n+2)=d
=>3n+5 chia hết cho d
=>n+2 chia hết cho d
=>3(n+2)chia hết cho d
=> 3n+6 chia hết cho d
=>( 3n+6) - (3n+5)chia hết cho d
=>3n+6-3n-5 chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy P tối giản với mọi n
............chúc bạn học tốt..................
Chứng tỏ phân số 3n+2/5n+3 tối giản với mọi số tự nhiên n.
Gọi ƯCLN(3n + 2, 5n + 3) = d (d thuộc N*)
Ta có:
3n + 2 chia hết cho d
5n + 3 chia hết cho d
<=> 3(3n + 2) chia hết cho d = 9n + 6 chia hết cho d
<=> 2(5n +3) chia hết cho d = 10n + 6 chia hết cho d
=> 10n + 6 - 9n + 6 chia hết cho d = 1 chia hết cho d
=> d = 1
<=> 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau.
=> Phân số \(\frac{3n+2}{5n+3}\) là phân số tối giản.
gọi d là ưcln của 3n+2 và 5n+3, ta có
﴾3n+2﴿‐﴾5n+3﴿ chia hết cho d
5﴾3n+2﴿‐3﴾5n+3﴿ chia hết cho d
15n+10‐15n‐9 chia hết cho d
15n‐15n+10‐9 chia hết cho d
1 chia hết cho d => d=1
vậy 3n+2/5n+3 là 2 phân số tối giản
Gọi ƯCLN(3n + 2, 5n + 3) = d (d thuộc N*)
Ta có:
3n + 2 chia hết cho d
5n + 3 chia hết cho d
<=> 3(3n + 2) chia hết cho d = 9n + 6 chia hết cho d
<=> 2(5n +3) chia hết cho d = 10n + 6 chia hết cho d
=> 10n + 6 - 9n + 6 chia hết cho d = 1 chia hết cho d
=> d = 1
<=> 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau.
=> Phân số \(\frac{3n+2}{5n+3}\) là phân số tối giản.
Cấm đứa nào copy bài tao đã làm, tao làm nhanh nhứt
Chứng minh phân thức 3 n 3 n + 1 là tối giản với mọi số tự nhiên n
Hướng dẫn giải:
Gọi d là ƯCLN của 3n và 3n + 1
⇒ 3n ⋮ d và (3n + 1)⋮ d
⇒ [(3n + 1) - 3n ] = 1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Chứng tỏ rằng các phân số sau tối giản với mọi số tự nhiên n
a) n + 3/2n + 7
b) 3n + 7/6n + 15
a,Gọi ƯCLN(n+3,2n+7)=d
n+3⋮d ⇒2n+6⋮d
2n+7⋮d ⇒2n+7⋮d
(2n+7)-(2n+6)⋮d
1⋮d ⇒ƯCLN(n+3,2n+7)=1
Vậy phân số n+3/2n+7 là phân số tối giản
a,Gọi ƯCLN(3n+7,6n+15)=d
3n+7⋮d ⇒6n+14⋮d
6n+15⋮d ⇒6n+15⋮d
(6n+15)-(6n+14)⋮d
1⋮d ⇒ƯCLN(3n+7,6n+15)=1
Vậy phân số 3n+7/6n+15 là phân số tối giản
a) Gọi ƯCLN(n+3,2n+7)=d
n+3⋮d ⇒2n+6⋮d
2n+7⋮d ⇒2n+7⋮d
(2n+7)-(2n+6)⋮d
1⋮d ⇒ƯCLN(n+3,2n+7)=1
Vậy phân số n+3/2n+7 là phân số tối giản
b) Gọi ƯCLN(3n+7,6n+15)=d
3n+7⋮d ⇒6n+14⋮d
6n+15⋮d ⇒6n+15⋮d
(6n+15)-(6n+14)⋮d
1⋮d ⇒ƯCLN(3n+7,6n+15)=1
Vậy phân số 3n+7/6n+15 là phân số tối giản