Q= /x-1/ + /y-2/ + /z-3/ với /x/ + /y/ + /z/ = 2018
CMR với x, y, z khác 0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\) thì hai trong ba số x, y, z đối nhau
Áp dụng chứng minh : \(\dfrac{1}{x^{2018}}+\dfrac{1}{y^{2018}}+\dfrac{1}{z^{2018}}=\dfrac{1}{x^{2018}+y^{2018}+z^{2018}}\)
Cho x + y + z = 1 ; x , y , z > 0
CMR : \(\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}\) >/ 14
Cho x , y , z thuộc Z ; x,y,z khác 0 và \(\sqrt{x+y+z-2018}+\sqrt{2018\left(xy+yz+zx-xyz\right)}=0\)
Tính S = \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}\)
CÁC BẠN GIẢI GIÚP MÌNH CHI TIẾT BÀI NÀY VỚI !
Bài 1:Áp dụng C-S dạng engel
\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)
\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)
1. Cho x;y;z thỏa mãn
\(x+y+z=x^2+y^2+z^2=x^3+y^3+z^3=1\)=1
Tính \(P=x^{2017}+y^{2018}+z^{2019}\)
2. Cho \(M=2018^2+2018^2.2019^2+2019^2\)
CM: M là số chính phương.
3. Cho ax+by=c; bx+cy=a; cx+ay=b. CMR: \(a^3+b^3+c^3=3abc\)
Cho x,y,z>0 và \(x^{2018}+y^{2018}+z^{2018}=3.\) Tìm max N=\(x^2+y^2+z^2\)
Cho 3 số thực x, y, z khác 0 thỏa mãn x +y +z =1. Và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\). Tính giá trị của biểu thức M=\(x^{2018}+y^{2018}+z^{2018}\)
tìm giá trị nhỏ nhất của
Q= /x-1/ + /y-2/ + /z-3/ với /x/ + /y/ + /z/ = 2018Q = (x-1)+(y-2)+(z-3)
Q = x-1+y-2+z-3
Q = x+y+z-3-2-1
mà x+y+z = 2018
=>Q = 2018-3-2-1
Q=2012
Vậy Q=2012
2. Tính P=(1+x/y)*(1+z/x)*(1+z/y). Biết x+y+z=0 và x,y,z #0
3. Tính Q= 5.y^10-y^15+2016. Biết (x+1)^2016+(y-1)^2018=0
2. Tính P=(1+x/y)*(1+z/x)*(1+z/y). Biết x+y+z=0 và x,y,z #0
3. Tính Q= 5.y^10-y^15+2016. Biết (x+1)^2016+(y-1)^2018=0