Tìm tất cả các số nguyên n. Thỏa mãn 1/9 x 27n = 3n
a, Tìm tất cả các số nguyên x thỏa mãn -11<x<9. Tính tổng tất cả các số nguyên vừa tìm đc
b,Tìm tất cả các số nguyên x thỏa mãn -9<x<10.Tính tổng các số nguyên vừa tìm đc
c,Tìm tất cả các số nguyên x thỏa mãn -15<x<16.Tính tổng tất cả các số nguyên vừa tìm đc
Phần b và c là dấu lớn hơn hoặc bằng nhé !!
MN GIÚP MÌNH VỚI Ạ !!!!
a)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8\right\}\)
Tổng các số nguyên trên là:
\((8-10).19:2=-19\)
b)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;...;6;7;8;9;10\right\}\)
Tổng các số trên là:
\((10-9).20:2=10\)
c) Các số nguyên x thỏa mãn là:
\(x\in\left\{-15;-14;-13;-12;-11;-10;-9;-8;-7;-6;-5;...;12;13;14;15;16\right\}\)
Tổng các số nguyên đó là:
\((16-15).32:2=16\)
Tìm tất cả các số nguyên n thỏa mãn :
4 - 3n chia hết cho 3n + 2
\(4-3n⋮3n+2\)
=>\(-3n-2+6⋮3n+2\)
=>\(3n+2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(3n\in\left\{-1;-3;0;-4;1;-5;4;-8\right\}\)
mà n là số nguyên
nên \(n\in\left\{-1;0\right\}\)
a, Tìm tất cả các số nguyên tố x,y thỏa mãn :x^2+165=y^2
b, Tìm tất cả các số nguyên n để phân sooa 3n+2/4n+2 rút gọn được
sorry,thao hai.coi như t chưa viết chi n-g-h-e.
thảo hải !!!!!!!!!!!!^-^^-^
mi củng hay hị .hihi .mình chộ rành hây-------/-----/
mình vô trả lời câu hỏi . mà ngu quá , nỏ đc câu mô -------
Tìm tất cả các số nguyên dương n thỏa mãn n+1 và 3n+6 là các số lập phương,đồng thời 2n+5 là số nguyên tố.
Đặt \(3n+6=x^3,n+1=y^3\)vì \(n\inℕ^∗\)nên \(x>1,y>3\)và x,y nguyên dương
\(\left(3n+6\right)-\left(n+1\right)=x^3-y^3\)
\(\Leftrightarrow2n+5=\left(x-y\right)\left(x^2+xy+y^2\right)\)(1)
Vì 2n+5 là số nguyên tố nên chỉ có 2 ước là 1 và 2n+5 mà (x-y) và (x2+xy+y2) cũng là 2 ước của 2n-5 nên:
\(\orbr{\begin{cases}x-y=1,x^2+xy+y^2=2n+5\\x^2+xy+y^2=1,x-y=2n+5\end{cases}}\)mà \(x>1,y>3\)nên vế dưới không thể xảy ra.
Vậy \(\hept{\begin{cases}x=y+1\\x^2+xy+y^2=2n+5\end{cases}}\)thay vế trên vào vế dưới\(\Rightarrow\left(y+1\right)^2+y\left(y+1\right)+y^2=2n+5\)
\(\Rightarrow3y^2+3y+1=2n+5\)
Vậy ta xét \(\hept{\begin{cases}3y^2+3y+1=2n+5\\y^3=n+1\Rightarrow2y^3=2n+2\end{cases}}\)trừ 2 biểu thức vế theo vế:
\(\Rightarrow-2y^3+3y^2+3y+1=3\Leftrightarrow\left(y+1\right)\left(y-2\right)\left(1-2y\right)=0\)
Vì nguyên dương nên nhận y=2--->n=7
Tìm tất cả các số nguyên dương thỏa mãn 2n2+3n+1 là số chính phương và n+5 là số nguyên tố
1.Tìm số nguyên x,biết:
a) 2/x-1/+/1-x/=9
2.tìm các cặp số x,y thỏa mãn:
(2x+1)(5-y)=6
3.tìm số nguyên "n" ,biết:
n2+3n-5 chia hết cho n+3
4.tìm tát cả các số nguyên x thỏa mãn:
(x2-1)(x2-6)<0
GIÚP MIK VỚI,ĐÚNG CHO 5 LIKE!!
Tìm tất cả các số tự nhiên n thỏa mãn 3n+14⋮n+1
\(\Rightarrow3\left(n+1\right)+11⋮n+1\\ \Rightarrow11⋮n+1\\ \Rightarrow n+1\inƯ\left(11\right)=\left\{1;11\right\}\\ \Rightarrow n\in\left\{0;10\right\}\)
a. Tìm tất cả các số nguyên x thỏa mãn -5<x<5
b. Tìm tất cả các giá trị nguyên của x thỏa mãn:
(-1) + 3 + (-5) + 7 + ... + x = 2002
Answer:
a. \(-5< x< 5\)
\(\Rightarrow x\in\left\{\pm4;\pm3;\pm2;\pm1;0\right\}\)
Tổng các số nguyên x thoả mãn:
\((-4) + (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 4\)
\(= (4 - 4) + (3 - 3) + (2 - 2) + (1 - 1) + 0\)
\(=0\)
1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố
2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố
3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương
4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p
5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab +c ( a + b )
Chứng minh: 8c + 1 là số cp
6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3
Chứng minh: 9x – 1 là lập phương đúng
7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c
8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1
Chứng minh: ( x + y )^2 + ( xy – 1 )^2 không phải là số cp
9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2
10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương
11, Cho các số nguyên n thuộc Z, CM:
A = n^5 - 5n^3 + 4n \(⋮\)30
B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ
C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42