cho tam giác ABC có góc Bac 120 độ các tia phân giác AD,BE CF.cmr DE vuông góc với DF
CẦN GẤP Ạ!!
Cho tam giác ABC có góc BAC =120 độ . Có các phân giác AD,BE,CF a,CM DE là phân giác góc ADC b,Đường thẳng vuông góc với F tại C cắt AB tại K . CM D,E,K thẳng hàng và tính góc BED c, Tính chu vi của DEF biết DE=21cm,DF=20 cm
Cho tam giác ABC có góc A = 120 độ, các tia phân giác AD, BE, CF
a) CM: DE là tia phân giác góc ngoài của tam giác ADB
b) Tính góc EDF
c) Cho DE = 21 cm, DF = 20cm. Tính chu vi tam giác DEF
CHO TAM GIÁC ABC ,CÓ GÓC A = 120 ,TIA PHÂN GIÁC CỦA GÓC BAC CẮT BC TẠI D .KẺ DE VUÔNG AB ,DF VUÔNG AC.TRÊN ĐOẠN EB LẤY ĐIỂM K ,TRÊN ĐOẠN FC LẤY ĐIỂM I SAO CHO :EK = FI .QUA C ,KẺ ĐƯỜNG THẲNG // VỚI AD CẮT TIA BA TẠI M.
CM:A,TAM GIÁC DEF ĐỀU
B, TAM GIÁC DKI CÂN
C,CHO BIẾT CM = 8 cm,CF = 5cm.TÍNH AD.
a) Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
\(\widehat{EAD}=\widehat{FAD}\)(AD là tia phân giác của \(\widehat{EAF}\))
Do đó: ΔAED=ΔAFD(cạnh huyền-góc nhọn)
Suy ra: DE=DF(Hai cạnh tương ứng)
Ta có: AD là tia phân giác của \(\widehat{BAC}\)(gt)
nên \(\widehat{BAD}=\widehat{CAD}=\dfrac{\widehat{BAC}}{2}=\dfrac{120^0}{2}=60^0\)
hay \(\widehat{EAD}=\widehat{FAD}=60^0\)
Ta có: ΔAED vuông tại E(gt)
nên \(\widehat{EAD}+\widehat{EDA}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{EDA}=90^0-60^0=30^0\)
Ta có: ΔAFD vuông tại F(Gt)
nên \(\widehat{FAD}+\widehat{FDA}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{FDA}=90^0-60^0=30^0\)
Ta có: \(\widehat{EDA}+\widehat{FDA}=\widehat{EDF}\)(tia DA nằm giữa hai tia DE và DF)
\(\Leftrightarrow\widehat{EDF}=30^0+30^0\)
hay \(\widehat{EDF}=60^0\)
Xét ΔDEF có DE=DF(cmt)
nên ΔDEF cân tại D(Định nghĩa tam giác cân)
Xét ΔDEF cân tại D có \(\widehat{EDF}=60^0\)(cmt)
nên ΔDEF đều(Dấu hiệu nhận biết tam giác đều)
Cho tam giác ABC có góc A=120 độ, phân giác AD. Kẻ DE vuông góc với AB, DF vuông góc với AC. Trên các đoạn thẳng BE và FC đặt EK = FI. Từ C kẻ đường thẳng song song với AD, cắt BA ở M
a. Chứng minh DE = DF và góc EDF = 60 độ
b. Chứng minh DK = DI
c. Tính số đo các góc của tam giác AMC
a. Xét tam giác EAD và tam giác FAD có
AED=AFD=90*
EAD=FAD(gt)
AD chung
=> tam giác EAD= tam giác FAD(ch-gn)
=> DE=DF( 2 cạnh t.ứ) và EDA=FDA( 2 góc t,ứ)
Ta có EDA=FDA=30*=>EDF=EDA+FDA=30*+30*=60*
b. Tam giác EAD=tam giác FAD(ch-gn=>AE=AF
Mà KE=FI => AE+EK=AF+FI => AK=AI
Xét tam giác AKD và tam giác AID
AK=AI; KAD=IAK; AD chung
=> tam giác AKD= tam giác AID(cgc)
=> DK=DI
c. Ta có BAC+CAM=180*( kề bù)
=> 120* + CAM=180* => CAM= 60*
Lại có AD//MC=> DAC=ACM= 1/2BAC= 60*
Xét tam giác ACM có ACM= CAM=60*=> tam giác ACM đều => ACM=CAM=AMC=60*
Cho tam giác ABC có AD là tia phân giác của góc BAC . Kẻ DE ; DF lần lượt vuông góc với AB , AC . BF cắt CE tại O . Chứng minh AO vuông góc với BC
Cho tam giác ABC có AD là tia phân giác của góc BAC . Kẻ DE ; DF lần lượt vuông góc với AB , AC . BF cắt CE tại O . Chứng minh AO vuông góc với BC
tam giác abc có b=90 độ a= 60 độ ad là tia phân giác của góc bac vẽ de vuông ac
a/ab=ae
b/ad vuông góc be
a: Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
=>AB=AE
b: AB=AE
DB=DE
=>AD là trung trực của BE
Cho tam giác ABC có góc A =40 độ. vẽ các đường phân giác AD,BE,CF của tam giác đó. chứng minh DE vuông góc với DF?
cho tam giác ABC góc A= 120 độ; AD, BE, CF là 3 đường phân giác. Biết DE= 21 cm, DF= 20cm. Chứng minh góc FDE vuông.