Cho số tự nhiên n>3. CMR nếu: \(2^n=10a+b\left(a.b\in N;0< b< 10\right).\)
Thì tích ab chia hết cho 6
Cho n là số tự nhiên và n >3. CMR nếu 2^n=10a+b{0<b<10} thì a.b chia hết cho 6 .Giúp zới
Cho số tự nhiên n và n>3. Chứng minh nếu 2n=10a+b (0<b<10) thì tích a.b chia hết cho 6
do n > 3 => 2^n >= 2^4 chia hết cho 16 => 10a + b chia hết cho 16
Ta có 2^n có thể có những tân cùng là 2; 4; 6; 8
TH1 2^n có tận cùng là 2 => n = 4k+1
=> 10a + b có tận cùng là 2 => b = 2 ( do b < 10)
ta có 2^n = 10a + 2 => 2( 2^(4k) - 1) = 10a => 2^( 4k) - 1 = 5a
do 2^(4k) - 1 chia hết cho 3 => 5a chia hết cho 3 => a chia hết cho 3
=> a.b = a.2 chia hết cho 6 (1)
TH2 2^n có tận cùng là 4 => n = 4k +2
=> 2^n = 10a + b có tận cùng là 4 => b = 4( do b <10)
=> 2^(4k +2) = 10a + 4 => 4.2^(4k) - 4 = 10a
=> 4(2^4k - 1) = 10 a
ta có 2 ^4k -1chia hết cho 3 => 10a chia hết cho 3 => a chia hết cho 3
=> a.b chia hết cho 6 (2)
Th3 2^n có tận cùng là 8 => n = 4k +3
TH 3 2^n có tận cùng là 6 => n = 4k
bằng cách làm tương tự ta luôn có a.b chia hết cho 6
Cho số tự nhiên n>3 CMR nếu 2^n=10a+b(a,b thuộc N,0<b<10) thì tích ab chia hết cho 6
do n > 3 => 2^n >= 2^4 chia hết cho 16 => 10a + b chia hết cho 16
Ta có 2^n có thể có những tân cùng là 2; 4; 6; 8
TH1 2^n có tận cùng là 2 => n = 4k+1
=> 10a + b có tận cùng là 2 => b = 2 ( do b < 10)
ta có 2^n = 10a + 2 => 2( 2^(4k) - 1) = 10a => 2^( 4k) - 1 = 5a
do 2^(4k) - 1 chia hết cho 3 => 5a chia hết cho 3 => a chia hết cho 3
=> a.b = a.2 chia hết cho 6 (1)
TH2 2^n có tận cùng là 4 => n = 4k +2
=> 2^n = 10a + b có tận cùng là 4 => b = 4( do b <10)
=> 2^(4k +2) = 10a + 4 => 4.2^(4k) - 4 = 10a
=> 4(2^4k - 1) = 10 a
ta có 2 ^4k -1chia hết cho 3 => 10a chia hết cho 3 => a chia hết cho 3
=> a.b chia hết cho 6 (2)
Th3 2^n có tận cùng là 8 => n = 4k +3
TH 3 2^n có tận cùng là 6 => n = 4k
bằng cách làm tương tự ta luôn có a.b chia hết cho 6
Cho n là số tự nhiên và n>3. CMR: Nếu 2^n = 10a + b (0<b<10) thì ab chia hết cho 6 (Giúp mình nha các bạn)
Cho số tự nhiên \(n>3\). Chứng minh rằng nếu \(2^n=10a+b\)\(\left(a,b\inℕ,0< b< 10\right)\) thì tích \(ab\) chia hết cho \(6\)
Để chứng minh rằng tích ab chia hết cho 6, ta cần chứng minh rằng một trong hai số a hoặc b chia hết cho 2 và một trong hai số a hoặc b chia hết cho 3.
Giả sử a chia hết cho 2, khi đó a có thể là 2, 4, 6 hoặc 8. Ta sẽ xét từng trường hợp:
Nếu a = 2, thì n = 10a + b = 20 + b. Vì n > 3, nên b > 0. Khi đó, tích ab = 2b chia hết cho 2.
Nếu a = 4, thì n = 10a + b = 40 + b. Vì n > 3, nên b > -37. Khi đó, tích ab = 4b chia hết cho 2.
Nếu a = 6, thì n = 10a + b = 60 + b. Vì n > 3, nên b > -57. Khi đó, tích ab = 6b chia hết cho 2.
Nếu a = 8, thì n = 10a + b = 80 + b. Vì n > 3, nên b > -77. Khi đó, tích ab = 8b chia hết cho 2.
Ta đã chứng minh được rằng nếu a chia hết cho 2, thì tích ab chia hết cho 2.
Tiếp theo, ta chứng minh rằng một trong hai số a hoặc b chia hết cho 3. Ta có thể sử dụng phương pháp tương tự như trên để chứng minh điều này.
Vì tích ab chia hết cho cả 2 và 3, nên tích ab chia hết cho 6.
Vậy, ta đã chứng minh được rằng nếu n = 10a + b (a, b ∈ N, 0 < a < 10), thì tích ab chia hết cho 6.
Cho n\(\in\) N và n lớn hơn 3 CMR 2^n = 10a+ b ( b là số có 1 chữ số và lớn hơn 0) thì a.b chia hết cho 6
cho n>3.cmr 2^n =10a+b (a.b thuộc N.0<b<10) thì tích a.b chia hết cho 6
Câu 1:
a/Cho \(A=a^2+b^2+c^2\) , trong đó a, b là 2 số tự nhiên liên tiếp và c= a.b
Chứng minh A là một số chính phương lẻ.
b/ Cho số tự nhiên n > 3. C/m nếu\(2^n=10a+b\left(0< b< 10\right)\)thì tích a.b chia hết cho 6
bài 1:CMR
a) n(n+8)(n+13) chia hết cho 3 với n là số tự nhiên
b)Nếu 10a+b chia hết cho 13 thì a+4b chia hết cho 13.Với a;b là số tự nhiên