tìm các chữ số a,b sao cho aabb là số chính phương
Tìm các chữ số a và b sao cho aabb là số chính phương
Lời giải:
$\overline{aabb}=1100a+11b=11(100a+b)=11.\overline{a0b}$
Để $\overline{aabb}$ là scp thì $\overline{a0b}=11k^2$ với $k$ tự nhiên.
Mà $\overline{a0b}$ là số có 3 chữ số nên:
$100\leq 11k^2\leq 999$
$\Rightarrow 3,05\leq k\leq 9,5$
$\Rightarrow k\in \left\{4; 5; 6; 7; 8; 9\right\}$
Thử lại ta thấy $k=8$ là TH duy nhất thỏa mãn.
$\overline{a0b}=11.8^2=704$
$\Rightarrow a=7; b=4$
Tìm hai chữ số a và b sao cho aabb là số chính phương ?
Tìm a , b sao cho số aabb là số chính phương?
7744=882 . Cho nên kết quả như vậy
Bài 1: Tìm n có 2 chữ số, biết rằng 2n+1 và 3n+1 đều là các số chính phương
Bài 2: Tìm số chính phương n có 3 chữ số, biết rằng n chia hết cho 5 và nếu nhân n với 2 thì tổng các chữ số của nó không thay đổi
Bài 3: Tìm số tự nhiên n (n>0) sao cho tổng 1! + 2! + ... + n! là một số chính phương
Bài 4: Tìm các chữ số a và b sao cho: \(\overline{aabb}\)là số chính phương
Bài 5: CMR: Tổng bình phương của 2 số lẻ bất kì không phải là một số chính phương
Bài 6: Một số gồm 4 chữ số, khi đọc ngược lại thì không đổi và chia hết cho 5, Số đó có thể là số chính phương hay không?
Bài 7: Tìm số chính phương có 4 chữ sô chia hết cho 33
CÁC BẠN GIÚP MÌNH NHÉ! THANKS
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
chịu thôi
...............................
Tìm các chữ số a,b biet aabb là số chính phương
aabb=7744=882
Tìm a,b sao cho số aabb(gạch trên đầu) là số chính phương
Tìm a , b sao cho số aabb là số chính phương?
Các bạn nhớ trình bày cho mik hiểu nhé đừng chỉ viết kết quả thôi nha . Thank you very much.
Xem cách giải thì bấn vào đây Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
a, Tìm các chữ số a, b sao cho 1980ab là số chính phương
b. Có hay không các chữ số c, d sao cho 1978cd là số chính phương
Câu a là a=2 b=5
Còn câu B mình không biết nha
Chúc cấc bạn học giỏi
a,Đặt \(\overline{1980ab}=k^2\)\(\left(k\in Z\right)\)
Vì ab là số có 2 chữ số \(\Rightarrow198000\le k^2\le198099\)
\(\Rightarrow\sqrt{198000}\le k\le\sqrt{198099}\)
\(\Rightarrow444,971...\le k\le445,08...\)
\(\Rightarrow k=445\)
\(\Rightarrow\overline{1980ab}=k^2=445^2=198025\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=5\end{cases}}\)
Vậy số cần tìm là \(198025\)
b, Đặt \(\overline{1978cd}=t^2\) \(\left(t\in Z\right)\)
Vì cd là số có 2 chữ số \(\Rightarrow197800\le t^2\le197899\)
\(\Rightarrow\sqrt{197800}\le t\le\sqrt{197899}\)
\(\Rightarrow444,74...\le t\le445\)
\(\Rightarrow t=445\)
Mà \(t^2=445^2=198025\ne\overline{1978cd}\)
Vậy không có giá trị nào của c,d thỏa mãn \(\overline{1978cd}\)là số chính phương
Cho A = aabb là 1 số chính phương . Hãy tìm a và b
Tìm stn k khác 0 , nhỏ nhất sao cho tổng của 19 stn liên tiếp k + 1, k+ 2,..., k+ 19 là 1 số chính phương