cho tam giác ABC sao cho M là trung điểm của BC và AM = BM. Chứng minh: tam giác ABC vuông tại A
1) Cho tam giác ABC sao cho M là trung điểm của BC và AM= BM . Chứng minh: tam giác ABC vuông tại A
ta có: \(BM=MC\)
\(\Rightarrow AM\) là đường trung tuyến ứng với cạnh \(BC\)
\(\Rightarrow AM=BM=MC=\frac{1}{2}BC\)
\(\Rightarrow\Delta ABC\) vuông tại \(A\)
Cho tam giác ABC vuông tại A, BD là phân giác (D € AC). Trên BC lấy điểm M sao cho BM = BA
a. Chứng minh tam giác ABD = tam giác MBD
b. Chứng minh BD là trung trực của AM
c. Kéo dài MD và BA cắt nhau tại N. Chứng minh DN > DM
d. Chứng minh AM // NC
Cho ∆ABC vuông tại A, lấy điểm M tên cạnh BC sao cho BM = BA. Qua điểm M kẻ đường thẳng vuông góc với cạnh BC cắt cạnh AC tại H.
a) Chứng minh: tam giác abh = tam giác mbh và AH < HC
b) Chứng minh:BH là đường trung trực của AM
c/Gọi giao điểm của MH và BA là K. Chứng minh : ∆BKC cân .
a: Xét ΔBAH vuông tại A và ΔBMH vuông tại M có
BH chung
BA=BM
=>ΔBAH=ΔBMH
=>AH=MH
mà MH<HC
nên HA<HC
b: BA=BM
HA=HM
=>BH là trung trực của AM
c: Xét ΔBMK vuông tạM và ΔBAC vuông tại A co
BM=BA
góc B chung
=>ΔBMK=ΔBAC
=>BK=BC
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm M sao cho AM = BM. Gọi I là trung điểm của AM, tia BI cắt AC tại N.
a. Chứng minh tam giác AIB = tam giác MIB
b. Chứng minh BN vuông góc với AM.
c. Tính số đo góc INC biết góc C = 30 độ
tại sao tia BI cắt Ac tại M phải là N
Mà ở đầu bài cậu nói là trên cạnh BC lấy điểm M sao cho MA=BM
Lời bài hát Thật Bất Ngờ
phiên bản 1/2
Đóng góp: mp3
THẬT BẤT NGỜ (Lyrics)
Trình bày: Trúc Nhân
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC tại H. Trên tia đối của HA lấy D sao cho HA=HD
a) chứng minh: tam giác AHC=tam giác DHC. Tam giác CAD là tam giác gì?
b) trên DC lấy K sao cho C là trung điểm của DK. Chứng minh AK//BC
c) từ C kẻ đường thẳng song song với AB cắt AK tại M. BM cắt AM tại Q. Chứng minh: AM+CM>2MQ
a)Xet 2 tam giac vuong AHB va DHC co:
HC chung
DH = AH
=>\(\Delta\)AHB = \(\Delta\)AHC (2 canh goc vuong)
Ta co : CA=CD (2 canh tuong ung)
=>\(\Delta\)CAD can
b)
Bài 1: cho tam giác ABC cân tại A có AB=AC=34cm, BC=32cm. Kẻ đường trung tuyến AM.
a) Chứng minh AM vuông góc vs BC
b) Tính độ dài AM.
Bài 2: Cho tam giác ABC, đường trung tuyến AM. Gọi I là trung điểm của BM. Trên tia đối của tia IA lấy điểm E sao cho IE=IA.
a) Điểm M là trọng tâm của tam giác nào ?
b) Gọi F là trung điểm của CE. Chứng minh ba điểm A, M, F thẳng hàng.
Cho tam giác ABC vuông tại A,M là trung điểm của.Trên tia đối của tia MA lấy điểm D sao cho MA=MD
A) Chứng minh rằng:Tam giác AMC =Tam giác DMB
B) Chứng minh rằng: Tam giác ABD vuông
C) So sánh : AM và BC
a: Xét ΔAMC và ΔDMB có
MC=MB
\(\widehat{AMC}=\widehat{DMB}\)
MA=MD
DO đó: ΔAMC=ΔDMB
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: ΔABD vuông
c: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=BC/2
cho tam giác ABC vuông tại A (AB<AC). TRên cạnh BC lấy điểm M sao cho BM=BA. Gọi E là trung điểm của AM, K là giao điểm của BE và AC.
a) Chứng minh tam giác ABE= tam giác MBE
b) Chứng minh KM vuông góc với BC
c) Qua M kẻ đường thẳng song song với AC cắt BK tại F, trên đoạn KC lấy điểm Q sao cho KQ = MF. Chứng minh tam giác ABK = tam giác QMC
Xét tam giác ABE và tam giác MBE
có BA=BM(GT)
BE chung
AE=EM (GT)
suy ra tam giác ABE = tam giác MBE (c.c.c)
suy ra góc BEA=góc BEM , góc BAE=góc BME (1)
Mà góc BEA + góc BEM=180độ
suy ra góc BEA =góc BEM=90độ
Xét tam giác EAK và tam giác EMK
có AE=EM (GT)
góc KEA=góc KEM = 90 độ
cạnh EK chung
suy ra tam giác EAK = tam giác EMK (cg.c)
suy ra góc KME=góc KAE (2)
Từ (1) và (2) suy ra góc KME +góc EMB=góc KAE+ góc EAB
suy ra góc KMB=góc KAB = 90 độ
suy ra KM vuông góc với BC
c) sai đề nhé