Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Thị Hà Vy
Xem chi tiết
Nguyễn Thị Sao Mai
Xem chi tiết
Đinh Đức Hùng
18 tháng 10 2017 lúc 14:23

Thay ab+bc+ac = 1 vào Q

Đinh Đức Hùng
18 tháng 10 2017 lúc 14:26

Thay ab+bc+ac = 1 và Q ta được :

\(Q=\left(a^2+ab+ac+bc\right)\left(b^2+ab+ac+bc\right)\left(c^2+ab+ac+bc\right)\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

\(=\left[\left(a+b\right)\left(a+c\right)\left(b+c\right)\right]^2\) là bình phương  của một số hữu tỉ (đpcm)

Beautiful Angel
Xem chi tiết
Minh Hiếu
Xem chi tiết
Minh Hiếu
24 tháng 2 2022 lúc 20:35

Thôi câu đó mình làm được rồi, các bạn giúp mình câu này nha

Cho \(a>b\ge0\). CMR: \(\dfrac{a^4+b^4}{a^4-b^4}-\dfrac{ab}{a^2-b^2}+\dfrac{a+b}{2\left(a-b\right)}\ge\dfrac{3}{2}\)

 
Nguyễn Hoàng Minh
24 tháng 2 2022 lúc 21:28

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\\ \to ab+bc+ca=abc=1\)

Ta có \(A=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)

\(\to A=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)

\(\to A=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

Vì $a,b,c\in \mathbb{Q}\to A\in \mathbb{Q}$

Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Ngọc Anh Minh
4 tháng 8 2023 lúc 7:37

\(Q=\left(a^2b^2+a^2+b^2+1\right)\left(c^2+1\right)=\)

\(=a^2b^2c^2+a^2b^2+a^2c^2+a^2+b^2c^2+b^2+c^2+1=\)

\(=a^2b^2c^2+\left(a^2b^2+b^2c^2+a^2c^2\right)+\left(a^2+b^2+c^2\right)+1\) (1)

Ta có

\(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=\)

\(=a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=1\)

\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=1-2abc\left(a+b+c\right)\) (2)

Ta có

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)=\)

\(=a^2+b^2+c^2+2\)

\(\Rightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\) (3)

Thay (2) và (3) vào (1)

\(Q=a^2b^2c^2+1-2abc\left(a+b+c\right)+\left(a+b+c\right)^2-2+1=\)

\(=\left(abc\right)^2-2abc\left(a+b+c\right)+\left(a+b+c\right)^2=\)

\(=\left[abc-\left(a+b+c\right)\right]^2\)

Nguyễn Long Vượng
Xem chi tiết
tth_new
14 tháng 3 2019 lúc 19:14

Tham khảo: Câu hỏi của Nguyen Nhat Minh - Toán lớp 8 - Học toán với OnlineMath

Nếu olm không hiện link xanh đậm,hãy nhập link này vào trình duyệt của bạn:https://olm.vn/hoi-dap/detail/214469884091.html

toi la toi toi la toi
Xem chi tiết
Songoku Sky Fc11
3 tháng 12 2017 lúc 18:35

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 
Songoku Sky Fc11
3 tháng 12 2017 lúc 18:33

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 Đúng 3  Sai 0 Sky Blue đã chọn câu trả lời này. 
Songoku Sky Fc11
3 tháng 12 2017 lúc 18:34

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 
Big City Boy
Xem chi tiết
Thỏ bông
Xem chi tiết
Y
19 tháng 5 2019 lúc 10:05

+ \(a^2+1=a^2+ab+bc+ca\)

\(=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)

+ Tương từ ta cm đc :

\(b^2+1=\left(a+b\right)\left(b+c\right)\)

\(c^2+1=\left(a+c\right)\left(b+c\right)\)

Do đó : \(Q=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)

\(\Rightarrow Q=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

Vì a,b,c là các số hữu tỉ nên \(\left(s+b\right)\left(b+c\right)\left(c+a\right)\)là số hữu tỉ

Do đó suy ra đpcm