18. Chứng minh rằng các phân số sau là phân số tối giản với mọi số tự nhiên n:
a) \(\dfrac{n+1}{2n+3}\)
b) \(\dfrac{2n+3}{4n+8}\)
c) \(\dfrac{3n+2}{5n+3}\)
Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*)
\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)
Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)
\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)
Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n+3 là số lẻ nên
\(\Rightarrow d=1\left(đpcm\right)\)
c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
18. Chứng minh rằng các phân số sau là phân số tối giản với mọi số tự nhiên n:
\(\dfrac{ n+1}{2n+3 }\) ý a
\(\dfrac{ 2n+3}{4n+8 }\)ý b
\(\dfrac{ 3n+2}{ 5n+3}\) ý c
Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )
n +1 = 2n + 2 (1) ; 2n+3*) (2)
Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1
vậy ta có đpcm
gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )
3n +2 = 15 n + 10 (1) ; 5n + 3 =15n + 9 (2)
lấy (!) - (2) ta được 15n + 10 - 15n - 9 = 1:d => d = 1
Vậy ta có đpcm
Chứng tỏ rằng phân số 2n+3 /4n+8 tối giản với mọi số tự nhiên n
Chứng minh rằng các phân số sau tối giản với mọi số tự nhiên n :
a. n+1/2n+3
b. 2n+3/4n+8
a. Muốn phân số n+1/2n+3 tối giản thì n+1 và 2n+3 có ƯCLN=1
Giả sử n+1 và 2n+3 có ước là a
=>n+1 chia hết cho a và 2n+3 chia hết cho
=>2(n+1) chia hết cho a và 2n+3 chia hết cho a
=>2n+2 chia hết cho a và 2n+3 chia hết cho a
=>(2n+3)-(2n+2) chia hết cho a
=> 1 chia hết cho a hay a thuộc Ư(1) = {1}
Vậy phân số n+1/2n+3 tối giản
Bây giờ mk bận, tối về giải tiếp nhé
Chứng tỏ rằng phân số sau tối giản với mọi số tự nhiên n
\(\frac{2n+3}{4n+8}\)
Giả sử phân số sau chưa tối giản
\(\Rightarrow2n+3⋮d;4n+8⋮d\left(d\in N;d>1\right)\)
\(2n+3⋮d\Rightarrow4n+6⋮d\)
\(\Rightarrow4n+8-4n-6⋮d\)
\(\Rightarrow2⋮d\)
Vậy d có thể = 2
Vậy p/s sau vẫn có thể tối giản đc
Giả sử ƯCLN (2n+3;4n+8)=d
\(\Rightarrow4n+8⋮d\)mà\(4n+8=2\left(2n+4\right)\)\(\Rightarrow2n+4⋮d\)
\(\Rightarrow d=2n+4-\left(2n+3\right)\)\(=2n+4-2n-3\)\(=1\)
Do d=1 thì \(\frac{2n+3}{4n+8}\)là số tối giản với bất kì số tư nhiên n
Chú bạn hok tốt
chứng minh các phân số sau đây tối giản với mọi số tự nhiên
\(\frac{n+1}{2n+3},\frac{2n+3}{4n+8}\)
\(\frac{n+1}{2n+3}\)= \(\frac{2\left(n+1\right)}{2n+3}\)= \(\frac{2n+2}{2n+3}\)= \(\frac{2n+3-1}{2n+3}\)=\(-\frac{1}{2n+3}\)
=> 2n+3 thuộc Ư(-1) ={ 1; -1}
Vậy...
Ko chắc nha
Chứng minh rằng phân số 2n+1/4n2+1 là phân số tối giản với mọi số tự nhiên n
Gọi UWCLN(2n+1;4n2+1) = d : (n thuộc N)
Suy ra : 2n + 1 chia hết cho d , do đó 2n(2n+1)chia hết cho d
hay 4n2 + 2n chia hết cho d
Áp dụng tính chất chia hết của 1 hiệu
4n2 + 2n - (2n + 1) chia hết cho d
Theo bài ra 4n2 + 1 chia hết cho d . Áp dụng tính chất chia hết của 1 hiệu , ta được
4n2 - 1 - (4n2 -1) chia hết cho d
4n2 - 4n2 + 1 chia hết cho d
2 chia hết cho d
Suy ra : d = {1;2}
Vì 2n + 1 và 4n2 + 1 là các số lẻ nên d=1
Vậy 2n+1 là các số tối giản với mọi số tự nhiên n
chứng tỏ rằng các phân số sau tối giản với mọi số tự nhiên n
\(\frac{2n+3}{4n+8}\)
Gợi Ư CLN\(\left(2n+3;4n+8\right)=d\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\Rightarrow2.\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\Rightarrow d=1;2\)
\(+d=2\Rightarrow2n+3⋮2\)
Mak 2n+3 ko chia hết cho 2
\(\Rightarrow d\ne2\)
\(\Rightarrow d=1\)
\(\Rightarrowđpcm\)
Chứng minh phân số sau là phân số tối giản với mọi só tự nhiên n \(\frac{5n+1}{6n+1}\) ;;;\(\frac{4n+8}{2n+3}\)
gọi d là ƯCLN(5n+1;6n+1)
=>5n+1 chia hết cho d =>6(5n+1)chia hết cho d=>30n+6 chia hết cho d
=>6n+1 chia hết cho d =>5(6n+1)chia hết cho d=>30n+5 chia hết cho d
=>(30n+6)-(30n+5)chia hết cho d
=> 1 chia hết cho d
=> d= 1
=>5n+1 và 6n+1 là hai snt cùng nhau
Vậy phân số 5n+1/6n+1 là phân số tối giản