Tam giác ABC có AB là cạnh nhỏ nhất. CMR góc C nhỏ hơn hoặc bằng 60 độ
Tam giác ABC có AB là cạnh nhỏ nhất. chứng minh rằng C nhỏ hơn hoặc bằng 60 độ
Tham khảo:
Góc đối diện với cạnh bé hơn là góc bé hơn
Mà AB là cạnh nhỏ nhất
=> góc C là góc nhỏ nhất
Vì: góc A + góc B + góc C = 180 độ
=> góc C ≤ 180 độ : 3
góc C ≤ 60 độ
Góc đối diện với cạnh bé hơn là góc bé hơn
Mà AB là cạnh nhỏ nhất
=> góc C là góc nhỏ nhất
Vì: góc A + góc B + góc C = 180 độ
=> góc C ≤ 180 độ : 3
góc C ≤ 60 độ
cho tam giác abc có bc là cạnh nhỏ nhất CMR góc a ≤ 60 độ
Cho tam giác nhọn có AH là đường cao lớn nhất, E là trung điểm của AC và BE = AH. CMR: góc B nhỏ hơn hoặc bằng 60 độ
Anh tưởng em làm được rồi
Lấy F đối xứng với E qua BC cắt BC tại G
Áp dụng tính chất đường trung bình ( em tự chứng minh nha ! ) ta có:\(EG=\frac{1}{2}AH\Rightarrow EF=AH=BE\)
Mà BE=BF nên tam giác BEF đều
\(\Rightarrow\widehat{EBC}=30^0\)
Do AH là đường cao lớn nhất nên BC là cạnh nhỏ nhất nên \(BC\le BA\) nên \(\widehat{EBC}\ge\widehat{EBA}\RightarrowĐPCM\)
Hình vẽ:
Xét \(\Delta ABC\)có:
\(AH=AE\left(gt\right)\)
\(\left(H\in BC,E\in AC\right)\)
\(AH\perp BC\left(gt\right)\)
\(\Rightarrow BE\perp AC\)
Xét \(\Delta ABH\)và \(\Delta BEA\)có:
\(BE=AH\left(gt\right)\)
\(\widehat{AHB}=90^0\left(AH\perp BC\right)\)
\(\widehat{BEA}=90^0\left(BE\perp AC\right)\)
\(AB\)là cạnh chung
\(\Rightarrow\Delta ABH=\Delta BAE\left(ch.cgv\right)\)
\(\Rightarrow\widehat{A}=\widehat{B}\)( 2 góc tương ứng )
Xét \(\Delta ABC\)có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)( định lý tổng 3 góc trong 1 tam giác )
mà \(\widehat{A}=\widehat{B}\left(cmt\right)\)
\(\Rightarrow\widehat{B}=\frac{180^0}{3}=60^0\)
S ( CBE ) = S ( EBA )
=> 1/2 . BC . BE .sin^CBE = 1/2 . AB . BE . sin^EBA
mà BC \(\le\)AB
=> sin^CBE \(\ge\)sin ^EBA
=> ^CBE \(\ge\)^EBA ok
1. Cho tam giác ABC có góc BAC lớn hơn hoặc bằng 90o. CMR AB + AC nhỏ hơn hoặc bằng \(\sqrt{2}.BC\)
2. Cho tam giác ABC có góc BAC lớn hơn hoặc bằng 120o. CMR AB + AC nhỏ hơn hoặc bằng \(2.BC \over{\sqrt{3}}\)
cho ABC có góc B = 60 độ , góc A nhỏ hơn góc A .
a) chứng minh AB nhỏ hơn BC
b) lấy D trên BC sao cho BD=BA . Chứng minh tam giác ABD đều
c) so sanh s độ dài các cạnh AB , BC,CA
đề bài sai bn ơi sao góc A lại nhỏ hơn góc A
a,c: SỬa đề. gó A<góc C
Vì góc A<góc C
mà góc A+góc C=120 độ
nên góc A<góc B<góc C
=>AB>BC
b: Xét ΔBAD có BA=BD và góc ABD=60 độ
nên ΔBAD đều
Cho a,b,c là độ dài 3 cạnh tam giác và a nhỏ hơn hoặc bằng b nhỏ hơn hoặc bằng c. CMR (a+b+c)2 nhro hơn hoặc bằng 9
cho tam giác ABC có cạnh BC dài nhất . Chứng minh rằng góc A nhỏ hơn 60 độ
Bài 1. Cho tam giác ABC có BC là cạnh nhỏ nhất, kẻ AH vuông góc với BC, dierm M là TĐ của AC sao cho: AH=BM. CMR: góc B < 60 độ.
Bài 2. Cho tam giác ABC với AB < AC, kẻ các đường trung tuyến BB' và CC'. CM: BB' < CC'.
1. Xét... =>gócB<60
CMR : Một tam giác không phải là tam giác đều thì nó có ít nhất một góc nhỏ hơn 60 độ
Giả sử tam giác ABC không đều không có góc nào nhỏ hơn 60 độ.
\(\widehat{BAC}=60^o+a;\widehat{ABC}=60^o+b;\widehat{ACB}=60^o+c\left(a,b,c\ne0\right)\)
Mà: \(\widehat{ABC}+\widehat{BAC}+\widehat{ABC}=180^o\)
\(\Leftrightarrow60^o+a+60^o+b+60^o+c=180^o\)
Mà: \(\Rightarrow a+b+c=0\left(a,b,c\ne\right)\) (mâu thuẫn)
Vậy: Tam giác ABC không đều có ít nhất một góc trong nhỏ hơn 60 độ
Không mất tính tổng quát , ta giả sử : \(\widehat{A}\ge\widehat{B}\ge\widehat{C}\)
Vì tam giác ABC không phải là tam giác đều , ta còn có \(\widehat{A}>\widehat{C}\). Giả sử \(\widehat{C}\ge60^o\) thì
\(\widehat{A}+\widehat{B}+\widehat{C}>180^o\) (vô lí)
Vậy \(\widehat{C}< 60^o\) => đpcm