2000-2001+2002-2003+...+2010-2011+2012
Cho A = \(\frac{2000}{2001}+\frac{2001}{2002}+\frac{2002}{2003}+\frac{2003}{2004}+\frac{2005}{2006}+\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\)
Hãy so sánh tổng các phân số trong A và so sánh với 15.
mỗi số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15
ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
hay tong tren be hon 15
tính: 1/2000+2001+1/2001+2002+1/2002+2003+...+1/2009+2010
=1/2000-1/2001+1/2001-1/2002+1/2002-1/2003+......+1/2009-1/2010
=1/2000-1/2010
=1/402000
\(\frac{1}{2000+2001}+\frac{1}{2001+2002}+\frac{1}{2002+2003}+...+\frac{1}{2009+2010}\)
\(=\frac{1}{2000}-\frac{1}{2001}+\frac{1}{2001}-\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2003}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=\frac{1}{2000}-\frac{1}{2010}\)
\(=\frac{1}{402000}\)
tính: 1/2000+2001+1/2001+2002+1/2002+2003+...+1/2009+2010
\(\frac{1}{2000}\)+2001+\(\frac{1}{2001}\)+ 2002+\(\frac{1}{2002}\)+2003+...+\(\frac{1}{2009}\)+2010
2001,0005+2002,0005+2003,0005+...+2010,0005
Số số hạng là:
(2010,0005-2001,0005)+1=10( số)
Số cặp số hạng là:
10:2= 5 ( cặp)
Tổng từng cặp là: 2001,0005+2010,0005=2002,0005+2009,0005=...=4011,001
Tổng của các số hạng trên là :
4011,001x5=20055,005
\(\frac{1}{2000+2001}+\frac{1}{2001+2002}+\frac{1}{2002+2003}+...+\frac{1}{2009+2010}\)
\(=\frac{1}{2000}-\frac{1}{2001}+\frac{1}{2002}-...+\frac{1}{2009}-\frac{1}{2010}\)
\(=\frac{1}{2000}-\frac{1}{2010}\)
\(=\frac{1}{402000}\)
phần a : \(\frac{x+2}{2010}+\frac{x+2}{2011}+\frac{x+2}{2012}=\frac{x+2}{2013}+\frac{x+2}{2014}\)
phần b :\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(a,\frac{x+2}{2010}+\frac{x+2}{2011}+\frac{x+2}{2012}=\frac{x+2}{2013}+\frac{x+2}{2014}\)
\(\Leftrightarrow\frac{x+2}{2010}+\frac{x+2}{2011}+\frac{x+2}{2012}-\frac{x+2}{2013}-\frac{x+2}{2014}=0\)
\(\Leftrightarrow\left(x+2\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
\(\text{Mà }\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\text{ nên:}\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
\(b,\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\Leftrightarrow \frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(M\text{à}:\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0 n\text{ê}n:\)
\(x+2004=0\)
\(\Leftrightarrow x=-2004\)
2000/2001* 2002/2003* 2001/2002* 2003/2004*2006/2000
2000/2001 * 2002/2003 * 2001/2002 * 2003/2004*2006/2000
=((2000/2001).2002):2003.2001/2002).2003):2004.2006)/2000
=1.000998004
\(\dfrac{2000}{2001}\cdot\dfrac{2002}{2003}\cdot\dfrac{2001}{2002}\cdot\dfrac{2003}{2004}\cdot\dfrac{2006}{2000}=\dfrac{2006}{2004}=\dfrac{1003}{1002}\)
tính gtrị của biểu thức bằng máy tính cásio(giải thích rõ hộ mình nha)
\(\sqrt[2011]{2010\sqrt[2010]{2009\sqrt[2009]{2008\sqrt[2008]{2007........\sqrt[2002]{2001\sqrt[2001]{2000}}}}}}\)
giải phương trình sau:
a) \(\frac{15-x}{2000}+\frac{14-x}{2001}=\frac{13-x}{2002}+\frac{12-x}{2003}\)
b) \(\frac{x-5}{2010}+\frac{x-4}{2011}=\frac{x-2010}{5}+\frac{x-2011}{4}\)
c) \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)
ai bít thì giúp mình với nhé
\(a,\frac{15-x}{2000}+\frac{14-x}{2001}=\frac{13-x}{2002}+\frac{12-x}{2003}\)
\(\Leftrightarrow\frac{15-x}{2000}+1+\frac{14-x}{2001}+1=\frac{13-x}{2002}+1+\frac{12-x}{2003}+1\)
\(\Leftrightarrow\frac{15-x+2000}{2000}+\frac{14-x+2001}{2001}=\frac{13-x+2002}{2002}+\frac{12-x+2003}{2003}\)
\(\Leftrightarrow\frac{2015-x}{2000}+\frac{2015-x}{2001}=\frac{2015}{2002}+\frac{2015-x}{2003}\)
\(\Leftrightarrow\left(2015-x\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}>0\)
\(\Leftrightarrow2015-x=0\)
\(\Leftrightarrow x=2015\)
KL : PT có nghiệm \(S=\left\{2015\right\}\)
a)\(\frac{15-x}{2000}+\frac{14-x}{2001}=\frac{13-x}{2002}+\frac{12-x}{2003}\)
\(\Leftrightarrow\frac{15-x}{2000}+1+\frac{14-x}{2001}+1=\frac{13-x}{2002}+1+\frac{12-x}{2003}+1\)
\(\Leftrightarrow\frac{15-x+2000}{2000}+\frac{14-x+2001}{2001}=\frac{13-x+2002}{2002}+\frac{12-x+2003}{2003}\)
\(\Leftrightarrow\frac{2015-x}{2000}+\frac{2015-x}{2001}-\frac{2015-x}{2002}-\frac{2015-x}{2003}=0\)
\(\Leftrightarrow\left(2015-x\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)=0\)
Vì \(\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)\ne0\)
\(\Leftrightarrow2015-x=0\)
\(\Leftrightarrow x=2015\)
Vậy x=2015
Tính giá trị biểu thức:
\(D=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}+\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}+\dfrac{2}{2004}}{\dfrac{2}{2002}+\dfrac{3}{2003}+\dfrac{3}{2004}}\)
\(H=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}}{\dfrac{2011}{1}+\dfrac{2010}{2}+...+\dfrac{1}{2011}}\)
\(I=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}}{\dfrac{2012}{2}+\dfrac{2012}{3}+...+\dfrac{2012}{2011}}\)
Help me!
Chữa lại đề.Bạn xem lại đề xem đúng chưa nhé!
\(D=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}+\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}+\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}+\dfrac{3}{2004}}\)
\(D=\dfrac{1.\left(\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}\right)}{5.\left(\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}\right)}-\dfrac{2.\left(\dfrac{1}{2002}+\dfrac{1}{2003}+\dfrac{1}{2004}\right)}{3\left(\dfrac{1}{2002}+\dfrac{1}{2003}+\dfrac{1}{2004}\right)}\)
\(D=\dfrac{1}{5}-\dfrac{2}{3}\)
\(D=-\dfrac{7}{15}\)
Cái này học lâu rồi.Bạn xem lại xem mình làm đúng chưa nhé!
cho a^2000+b^2000=a^2001+b^2001=a^2002+b^2002
tính a^2011+b^2011
a2000 + b2000 = a2001 + b2001
=> a2000(a - 1) + b2000.(b - 1) = 0 (1)
Tương tự ta có :
a2001 + b2001 = a2002 + b2002
=> a2001(a - 1) + b2001(b - 1) = 0 (2)
Trừ 2 cho 1 , ta có kết quả sau khi nhóm lại là :
a2000(a - 1)2 + b2000.(b - 1)2 = 0
Ta thấy mỗi số hạng đều > 0
=> Mỗi đơn thức > 0
Vậy ta tìm được a = 0 hoặc a = 1
b = 0 hoặc b = 1
=> . . . .
Ta có a^2000+b^2000=a^2000.a+b^2000.b=a^2000.a.a+b^2000.b.b
=>1+1=a+b=a^2+b^2
=>a=1 b=1
hay a^2011+b^2011=2