Cho các số thực dương a,b,c thỏa mãn abc=1.
CMR: \(\frac{a-1}{b+1}+\frac{b-1}{c+1}+\frac{c-1}{a+1}\ge0\)
cho a , b , c là các số thực dương thỏa mãn điều kiện abc = 1 . CMR : \(\frac{a}{a^3+a+1}+\frac{b}{b^3+b+1}+\frac{c}{c^3+c+1}\le1\)
Mình có cách này,không chắc lắm:
\(VT=\frac{a}{a\left(a^2+bc+1\right)}+\frac{b}{b\left(b^2+ac+1\right)}+\frac{c}{c\left(c^2+ab+1\right)}\) (làm tắt,bạn tự hiểu nha)
\(=\frac{1}{a^2+bc+1}+\frac{1}{b^2+ac+1}+\frac{1}{c^2+ab+1}\)
\(\le\frac{1}{3}\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)\)
\(=\frac{1}{3}\left[\left(1+1+1\right)-\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\right]\)
\(=1-\frac{1}{3}\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\)
Áp dụng BĐT Cô si với biểu thức trong ngoặc:
\(=1-\frac{1}{3}\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\)
\(\le1-\sqrt[3]{\left(\sqrt[3]{a}-1\right)\left(\sqrt[3]{b}-1\right)\left(\sqrt[3]{c-1}\right)}\le1^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi a = b = c = 1
Ta c/m bđt sau:
\(a^3+1\ge a^2+a\)
\(\Leftrightarrow a^3+1-a^2-a\ge0\Leftrightarrow a\left(a^2-1\right)-\left(a^2-1\right)\ge0\Leftrightarrow\left(a-1\right)^2\left(a+1\right)\ge0\)
\(\Rightarrow\frac{a}{a^3+a+1}\le\frac{a}{a^2+2a}=\frac{1}{a+2}\)
\(\Rightarrow\frac{a}{a^3+a+1}+\frac{b}{b^3+b+1}+\frac{c}{c^3+c+1}\le\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)
Đặt \((a,b,c)\rightarrow(\frac{x}{y},\frac{y}{z},\frac{z}{x})\)
\(\Rightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=\frac{y}{x+2y}+\frac{z}{y+2z}+\frac{x}{z+2x}=\frac{1}{2}\left(1-\frac{x}{x+2y}+1-\frac{y}{y+2z}+1-\frac{z}{z+2x}\right)=\frac{3}{2}-\frac{1}{2}\left(\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xy}\right)\)\(\le\frac{3}{2}-\frac{1}{2}\left(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\right)=\frac{3}{2}-\frac{1}{2}.\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Dấu bằng xảy ra khi a=b=c=1
cho a,b,c là các số thực dương thỏa mãn abc=1.CMR
\(\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)\left(c-1+\frac{1}{a}\right)\le1\)
Đặt \(a=\frac{x}{y},b=\frac{y}{z},c=\frac{z}{x}\) là ra bạn KK
cho a,b,c là các số thực dương thỏa mãn abc=1.CMR:
\(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}\ge\frac{3}{2}\)
Cho a; b; c là các số thực dương thỏa mãn ab + bc + ca = 3.
CMR: \(\frac{1}{1+a^2\left(b+c\right)}+\frac{1}{1+b^2\left(c+a\right)}+\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{abc}\)
Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)
\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)
\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)
\(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)
\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)
cho 3 số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(P=\frac{a-1}{c}+\frac{c-1}{b}+\frac{b-1}{a}\ge0\)
Cho các số thực dương a,b,c thỏa mãn ab + bc+ ca= abc. CMR
\(\left(a+b+c\right)\left(\frac{1}{a+bc}+\frac{1}{b+ca}+\frac{1}{c+ab}\right)\le\frac{9}{4}\)
Đặt: \(M=\frac{1}{a+bc}+\frac{1}{b+ca}+\frac{1}{c+ab}=\Sigma_{cyc}\frac{a}{a^2+ab+bc+ca}\)
\(\Rightarrow M.\left(a+b+c\right)=3-\Sigma_{cyc}\frac{bc}{a^2+ab+bc+ca}\)
Đến đây t cần chứng minh:
\(\frac{bc}{a^2+ab+bc+ca}+\frac{ca}{b^2+ab+bc+ca}+\frac{ab}{c^2+ab+bc+ca}\ge\frac{3}{4}\) (*)
Từ điều kiện ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\left(x,y,z>0\right)\)
\(\Rightarrow x+y+z=1\)
(*) \(\Leftrightarrow\frac{x^2}{\left(x+y\right)\left(z+x\right)}+\frac{y^2}{\left(x+y\right)\left(y+z\right)}+\frac{z^2}{\left(y+z\right)\left(z+x\right)}\ge\frac{3}{4}\)
Theo Cô-si: \(\frac{x^2}{\left(x+y\right)\left(z+x\right)}+\frac{9}{16}\left(x+y\right)\left(z+x\right)\ge\frac{3}{2}x\)
Nhứng phần kia tương tự
\(\Rightarrow\Sigma_{cyc}\frac{x^2}{\left(x+y\right)\left(z+x\right)}\ge\frac{3}{2}\left(x+y+z\right)-\frac{9}{16}\left[\left(x+y+z\right)^2+\left(xy+yz+zx\right)\right]\ge\frac{3}{4}\)
Lần trước làm không đúng hy vọng bây giờ gỡ lại được
nub
Bạn suy ra dòng 8 mk chưa hiểu, giải kĩ cho mk đc ko
À hiểu r nha bạn,
Bài làm thật xuất sắc!
Cho 3 số thực dương a, b, c thỏa mãn abc = 1. CMR:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+3\ge2\left(a+b+c\right)\)
\(\frac{1}{a^2}=\frac{1}{\left(bc\right)^2}\)
\(\Rightarrow\frac{1}{a^2}+1=\frac{1}{\left(bc\right)^2}+1\ge2\frac{1}{bc}=2a\)
Bạn Hoàng sai rồi nhé:
cho \(a=\frac{3}{2};b=2;c=\frac{1}{3}\) (t/m đk abc=1)
Suy ra \(a+b+c=\frac{3}{2}+2+\frac{1}{3}=3,8\left(3\right)>3\) nhé
Vì abc = 1 nên ta viết bất đẳng đẳng lại thành:\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{3}{abc}\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(a;b;c\right)\). Khi đó ta cần chứng minh \(a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\)với abc = 1
Theo nguyên lí Dirichlet thì trong ba số a - 1; b - 1; c - 1 tồn tại ít nhất hai số cùng dấu. Giả sử hai số đó là a - 1 và b - 1 thì \(\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab\ge a+b-1\Leftrightarrow abc\ge ac+bc-c\)
Khi đó \(a^2+b^2+c^2+3abc\ge a^2+b^2+c^2+3\left(ac+bc-c\right)\)nên phép chứng minh sẽ hoàn tất nếu ta chỉ ra được rằng \(a^2+b^2+c^2+3\left(ac+bc-c\right)\ge2\left(ab+bc+ca\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(a-b\right)^2+c\left(a+b+c-3\right)\ge0\)(Luôn đúng vì theo AM - GM cho 3 số dương thì \(a+b+c\ge3\sqrt[3]{abc}=3\))
Đẳng thức xảy ra khi a = b = c = 1
cho các số thực dương a,b,c thỏa mãn a+b+c=1 . CMR
\(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{9}{10}\)
Ta có : \(a^2+\frac{1}{9}\ge\frac{2}{3}a\)
Suy ra
\(VT\le\Sigma\left(\frac{a}{\left(a^2+1\right)}\right)\le\Sigma\frac{a}{\frac{2}{3}a+\frac{8}{9}}=\Sigma\frac{9a}{6a+8}=\frac{9}{2}-\Sigma\frac{6}{4+3a}\le\frac{9}{2}-\frac{54}{12+3\left(a+b+c\right)}=\frac{9}{10}\)
Đẳng thức xảy ra <=> \(a=b=c=\frac{1}{3}\)
Cách khác nhá.
Lời giải
Ta sẽ c/m:\(\frac{a}{a^2+1}\le\frac{18}{25}a+\frac{3}{50}\)
Thật vậy,ta có: BĐT \(\Leftrightarrow\frac{a}{a^2+1}-\frac{18}{25}a-\frac{3}{50}\le0\)
Thật vậy:\(VT=\frac{-\left(4a+3\right)\left(3a-1\right)^2}{50\left(a^2+1\right)}\le0\forall x\)
Vậy \(\frac{a}{a^2+1}\le\frac{18}{25}a+\frac{3}{50}\).Thiết lập hai BĐT còn lại tương tự và cộng theo vế:
\(VT\le\frac{18}{25}\left(a+b+c\right)+\frac{9}{50}=\frac{9}{10}^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Không mất tỉnh tổng quát giả sử \(a\ge b\ge c\Rightarrow a\ge\frac{1}{3}\ge c\). Xét hai trường hợp sau:
+) TH 1: \(c\ge\frac{-3}{4}\)ta có
\(\frac{9}{10}-\text{Σ}_{cyc}\left(\frac{a}{a^2+1}\right)=\text{Σ}_{cyc}\left(\frac{18a}{25}+\frac{5}{30}-\frac{a}{a^2+1}\right)\)\(=\text{Σ}_{cyc}\frac{\left(3a-1\right)^2\left(4a+3\right)}{50\left(a^2+1\right)}\ge0\)
+) TH 2: \(c\le\frac{-3}{4}\)Áp dụng bđt AM - GM, ta có:
\(\frac{a}{a^2+1}+\frac{b}{b^2+1}\le1\)
Khi đó nếu \(\frac{c}{c^2+1}\le-\frac{9}{10}\Leftrightarrow-5-2\sqrt{6}\le c\le-\frac{3}{4}\)ta có ngay điều phải chứng minh
Xét trường hợp \(-5-2\sqrt{6}\ge c\)khi đó ta có \(3+\sqrt{6}\le a\Rightarrow\frac{a}{a^2+1}\le\frac{1}{5}\).Từ đây suy ra:
\(\text{Σ}_{cyc}\left(\frac{a}{a^2+1}\right)\le\frac{a}{a^2+1}+\frac{b}{b^2+1}\le\frac{1}{5}+\frac{1}{2}=\frac{7}{10}< \frac{9}{10}\)
Vậy bđt được chứng minh. Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
Cho các số thực dương a;b;c thỏa mãn abc=1
CMR
\(\frac{a}{\left(a+1\right)^2}+\frac{b}{\left(b+1\right)^2}+\frac{c}{\left(c+1\right)^2}-\frac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)<=1/4