Chứng minh 2 số lẻ liên tiếp nguyên tố cùng nhau
chứng minh 2 số lẻ liên tiếp nhau nguyên tố cùng nhau
gọi 2 số lẻ đó là 2k+1 và 2k+3
gọi ước chung lớn nhất của 2 số lẻ đó là p
=>2k+1 chia hết cho p; 2k+3 chia hết cho p
=>2k+3-2k-1=2 chia hết cho p
=>p=1;2
Vay trường hợp p=2 loại vì 2k+1 và 2k+3 lẻ
Chứng minh 2n+5 và 6n+17 là hai số nguyên tố cùng nhau
Chứng minh 2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
Chứng minh n+3 và 3n+10 là hai số nguyên tố cùng nhau
Chứng minh 2 số lẻ liên tiếp nguyên tố cùng nhau
gọi hai số lẻ liên tiếp là : 2n + 1 và 2n + 3 ( n \(\in\)N )
Đặt ƯCLN ( 2n + 1 ; 2n + 3 ) = d ( d \(\in\)N* )
Ta có : 2n + 1 \(⋮\)d
2n + 3 \(⋮\)d
\(\Rightarrow\)( 2n + 3 ) - ( 2n + 1 ) \(⋮\)d
\(\Rightarrow\)2 \(⋮\)d
\(\Rightarrow\)d = { 1 ; 2 }
Vì d là ước lẻ của 2 số lẻ liên tiếp nên d \(\ne\)2
\(\Rightarrow\)d = 1
Vậy 2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
gọi 2 số lẻ đó là 2k+1 và 2k+3
gọi ước chung lớn nhất của 2 số lẻ đó là p
=>2k+1 chia hết cho p; 2k+3 chia hết cho p
=>2k+3-2k-1=2 chia hết cho p
=>p=1;2
trường hợp p=2 loại vì 2k+1 và 2k+3 lẻ
Nếu mình đúng thì các bạn k mình nhé
chứng minh các số sau đây nguyên tố cùng nhau
a; 2 số lẻ liên tiếp
b; 2 số tự nhiên liên tiếp
a: Gọi a=UCLN(2k+1;2k+3)
\(\Leftrightarrow2k+3-2k-1⋮a\)
\(\Leftrightarrow2⋮a\)
mà 2k+1 là số lẻ
nên a=1
=>2k+1 và 2k+3 là hai số nguyên tố cùng nhau
b: Gọi a=UCLN(n+1;n+2)
\(\Leftrightarrow n+2-n-1⋮a\)
\(\Leftrightarrow1⋮a\)
=>a=1
=>n+1 và n+2 là hai số nguyên tố cùng nhau
Chứng minh 2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
gọi là 2 số lẻ liên tiếp : 2n+1 ; 2n+3 ( n thuộc N)
gọi d là ƯC( 2n+1 ; 2n+3 ) ( d thuộc N*)
=> 2n+1 chia hết cho d ; 2n+3 chia hết cho d => 2 chia hết cho d
=> d thuộc Ư(2) ={ 1; 2}
Vì 2 là số chẵn khác d nên d =1
=> ĐPCM
gọi 2 số lẻ liên tiếp là n+1 và n+3
coi d là ước chung lớn nhất của n+1 và n+ 3 \(\left(d\in N^{ }\right)\)
ta có : n+ 1 chia hết cho d
n+3 chia hết cho d
suy ra n+3 - (n+1 )chia hết cho d
suy ra n+3-n-1 chia hết cho d
suy ra 2 chia hết cho d
vậy d thuộc ước của 2
vậy d = 1 hoặc d= 2
d ko thể bằng 2 vì n +1 là số lẻ ko chia hết cho 2
vậy d = 1
suy ra ước chung lớn nhất của 2 số lẻ liên tiếp là d
suy ra 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau
Chứng minh rẵng 2 số lẻ liên tiếp luôn nguyên tố cùng nhau?
Gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3
và d là ước chung lớn nhất của 2k+1 và 2k+3(d thuộc N*)
Vì 2k+1 chia hết cho d
và 2k+3 chia hết cho d
Nên:(2k+3) - (2k+1) chia hết cho d
hay 2 chia hết cho d
Vì d thuộc N* =>d=1
Vậy 2 số lẻ liên tiếp luôn nguyên tố cùng nhau.
Lời giải mik tâm huyết lắm mới viết á!k cho mik đi các bạn!
Gọi x là số lẻ bé , x+2 là số lẻ lớn . ( x là số lẻ )
Gọi d là ƯCLN(x;x+2) = 1
Ta có :
x chia hết cho d
x+2 chia hết cho d
=> x+2 - x chia hết cho d
2x+2 - 2x+1 chi hết cho d
1 chia hết cho d => d = 1
=> ƯCLN(x;x+2) = 1 hay 2 số lẻ liên tiếp thì nguyên tố cùng nhau
Chứng minh rằng 2 số lẻ liên tiếp là hai số nguyên tố cùng nhau.
gọi 2 số lẻ đó là 2k+1 và 2k+3
gọi ước chung lớn nhất của 2 số lẻ đó là p
=>2k+1 chia hết cho p; 2k+3 chia hết cho p
=>2k+3-2k-1=2 chia hết cho p
=>p=1;2
trường hợp p=2 loại vì 2k+1 và 2k+3 lẻ
Hai số nguyên tố cùng nhau là hai số lẻ có BCNN là tích của chúng
7 và 9 là hai số lẻ liên tiếp cũng là hai số nguyên tố cùng nhau
BCNN= 63
ƯCLN=1
gọi 2 số lẻ đó là 2k+1 và 2k+3
gọi ước chung lớn nhất của 2 số lẻ đó là p
=>2k+1 chia hết cho p; 2k+3 chia hết cho p
=>2k+3-2k-1=2 chia hết cho p
=>p=1;2
trường hợp p=2 loại vì 2k+1 và 2k+3 lẻ
chứng minh 2 số tư nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau
Gọi hai số đó là:2k+1 và 2k+3(k thuộc N) và ƯCLN(2k+1,2k+3)=d
=>2k+1 chia hết cho d và 2k+3 chia hết cho d
=>(2k+1)-(2k+3) chia hết cho d
=>2 chia hết cho d
=>ƯCLN(2k+1,2k+3) thuộc 1 hoặc 2 Mà 2k+1 và 2k+3 là số lẻ
=>ƯCLN(2k+1,2k+3)=1
=>2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
chứng minh 2 số lẻ liên tiếp nguyên tố cùng nhau
goi 2 so le lien tiep la 2k+1 va 2k+3
goi ƯCLN(2k+1 va 2k+3)la d
=>2k+1 va 2k+3 chia het cho d
=> (2k+3)-(2k+1) chia het cho d
2 chia het cho d
=>d thuoc {1;2}
ma day la ƯCLN nen d=2 ma so le khong chia het cho 2 nen d khong the bang 2
=>d=1
vay 2 so le lien tiep luon nguyen to cung nhau