Cho \(\hept{\begin{cases}mx-y=2\\3x+my=5\end{cases}}\)Tìm m để Hpt có nghiệm duy nhất (x;y) biết \(x+y=1-\frac{m^2}{m^2+3}\)
Tìm m để HPT có nghiệm duy nhất
\(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
\(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\mx-y=m^2-2\left(2\right)\end{cases}}\)
\(\left(2\right)\Rightarrow y=-m^2+2+mx\)
Thay (1) => \(\left(m+1\right)x+m\left(-m^2+2+mx\right)=2m-1\)
\(\Leftrightarrow\left(m^2+m+1\right)x-m^3+1=0\)
\(\Leftrightarrow x=\frac{m^3-1}{m^2+m+1}=m-1\)
\(\Rightarrow y=-m^2+2+m\left(m-1\right)=-m^2+2+m^2-m=2-m\)
Ta có: (m-1)(2-m)=-m2+3m-2=\(-\left(m-\frac{3}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu "=" <=> \(m=\frac{3}{2}\)
Vậy \(m=\frac{3}{2}\)hpt có nghiệm duy nhất
tks bạn
Cho hpt :\(\hept{\begin{cases}x+my=m+1\left(1\right)\\mx+y=3m-1\left(2\right)\end{cases}}\)
a. Giải hpt khi m=1
b. Tìm m để hpt có nghiệm duy nhất mà x=/y/.
Cho hpt sau:
\(\hept{\begin{cases}3x+my=5\\mx-y=1\end{cases}}\)
CM hệ có nghiệm duy nhất với mọi m
Để hệ có nghiệm duy nhất thì: \(\frac{3}{m}\ne\frac{m}{-1}\)
\(\Leftrightarrow m^2\ne-3\)(1)
Vì (1) luôn đúng với mọi m
=> Hệ luôn có nghiệm duy nhất
=.= hk tốt!!
bạn có thể biến đổi sao nó ra nhưu v k? rút y? thay vào pt (1).. ? Mình hơi lan man phần này á @@ bạn giúp mình với
À ko,để hệ có nghiệm duy nhất thì: \(\frac{a}{a^'}\ne\frac{b}{b^'}\) ( cái này có trong sgk tập 2 trang 25 nha bn)
Nếu ko thì bạn cũng có thể tìm ra phương trình trung gian rồi xét tiếp là đc :)))
Cho hệ phương trình\(\hept{\begin{cases}-2mx+y=5\\mx+3y=1\end{cases}}\)
Tìm m để hpt có nghiệm duy nhất thỏa mãn x-y=2
Hệ phương trình: \(\hept{\begin{cases}-2mx+y=5\\mx+3y=1\end{cases}}\)
Với \(m\ne0\)hệ phương trình có 2 nghiệm riêng biệt là \(x=-\frac{2}{m};y=1\)
Để hệ phương trình có nghiệm duy nyaats thỏa mãn x - y = 2 thì
\(-\frac{2}{m}-1=2\Rightarrow-\frac{2}{m}=1+2=3\)
\(\Rightarrow3m=-2.1\Rightarrow m=-\frac{2}{3}\left(TMĐKx\ne0\right)\)
Vậy ...........................
Tìm m để HPT có nghiệm duy nhất
\(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
Ai giúp vs
Cho HPT \(\hept{\begin{cases}x+my=2\\mx-2y=1\end{cases}}\)
Tìm số nguyên m để hệ có nghiệm duy nhất ( x ; y ) mà x và y là các số nguyên
Để pt trên có nghiệm duy nhất thì ĐK là:
\(\frac{1}{m}\ne\frac{m}{-2}\)
\(\Leftrightarrow m^2\ne-2\left(luondung\right)\)
chắc vậy
là sao Nguyenx công tỉnh
chả hiểu
cái này ko giải hẹ à
\(\hept{\begin{cases}x+my=2\\mx-2y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2-my\\m\left(2-my\right)-2y=1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2-my\\2m-m^2y-2y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2-my\\-y\left(m^2+2\right)=1-2m\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2+\frac{-2m^2+m}{m^2+2}\\y=\frac{2m-1}{m^2+2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{2m^2+4-2m^2+m}{m^2+2}\\y=\frac{2m-1}{m^2+2}\end{cases}}}\Leftrightarrow\hept{\begin{cases}x=\frac{4+m}{m^2+2}\\y=\frac{2m-1}{m^2+2}\end{cases}}\)
Cho hệ PT \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
a, giải hpt khi m= -1
b, tìm m để hpt vô nghiệm
c, tìm m để hpt có nghiệm duy nhất (x,y) thỏa mãn \(2x-3y=1\)
a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)
=> HPT vô nghiệm
b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )
HPT vô nghiệm
<=> ( * ) vô nghiệm
\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)
<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2
<=> m = -1
Cho HPT \(\hept{\begin{cases}x+my=2\\mx-2y=1\end{cases}}\)
Tìm các số nguyên m để hệ có nghiệm duy nhất (x;y) mà x, y là các số nguyên
Cho hệ PT \(\hept{\begin{cases}mx-y=2\\3x+my=5\end{cases}}\)
a) Giair hệ PT khi m = -1
b) Tìm m đề HPT có nghiệm duy nhất thỏa mãn x + y = 1 - \(\frac{m^2}{m^2+3}\)