chứng tỏ rằng với mọi số tự nhiên n thì n2 + 5n + 5 không chia hết cho 25
(giúp mk vs đang cần gấp)
1,Tìm n ∈N sao cho 2n+7 chia hết cho 31
Chứng tỏ rằng với mọi số tự nhiên n thì :n2+5n+5 ko chia hết cho 25
1, Ta có:\(\left(2n+7\right)⋮31\Rightarrow\left(2n+7\right)\inƯ\left(31\right)\)
\(\Leftrightarrow2n+7\in1;31\)
\(\Rightarrow n\in-3;12\)
Mà n là số tự nhiên nên n=12
Vậy n=12.
2,Ta có:n2+5n+5=n(n+5)+5
n(n+5) là tích của 2 số tự nhiên cách nhau 5 đơn vị nên tận cùng là 0,4,6.
Suy ra n(n+5)+5 tận cùng là 1;5;9.
Mà số chia hết cho 25 tận cùng là 25,50,75,00.
Nhưng trong các trường hợp trên thì trường hợp tận cùng là 5 cũng rất ít và nó càng không thể chia hết cho 25.
Vậy n2+5n+5 không chia hết cho 25.
Bài 4. Cho A = 1 + 22 + 23 + ... + 211. Không tính tổng A, hãy chứng tỏ A chia hết cho 3.
Bài 5. Chứng tỏ rằng với mọi số tự nhiên n thì n2 + n + 1 là một số lẻ.
giúp tớ với tớ đang cần giải, tớ giải được 3 bài rồi mấy bài này khó quá giải hộ tớ nha
Bài 4:
$A+2=1+2+2^2+2^3+...+2^{11}$
$=(1+2)+(2^2+2^3)+....+(2^{10}+2^{11})$
$=(1+2)+2^2(1+2)+....+2^{10}(1+2)$
$=(1+2)(1+2^2+....+2^{10})$
$=3(1+2^2+...+2^{10})\vdots 3$
Vậy $A+2\vdots 3$ nên $A$ không chia hết cho $3$
Bài 5:
$n^2+n+1=n(n+1)+1$
Vì $n,n+1$ là hai số tự nhiên liên tiếp nên sẽ tồn tại một số chẵn và 1 số lẻ
$\Rightarrow n(n+1)$ chẵn
$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ (điều phải chứng minh)
chứng minh với mọi số tự nhiên thì n2+5n+5 ko chia hết cho 25
n2+5n+5=(n2+5n)+5
n2+5n=n.(n+5)
xét hiệu: (n+5)-n
mà 5 chia hết cho 5
=> (n+5)-n chia hết cho 5
hai số (n+5) và n chia hết cho 5 hoặc (n+5) và n chia cho 5 cùng số dư
th1:hai số (n+5) và n chia hết cho 5
=> n+5 chia hết cho 5 và n chia hết cho 5
=> n.(n+5) chia hết cho 5
mà 5 không chia hết cho 25
=> n2 +5n+5 không chia hết cho 25
th2: n+5 và n chia cho 5 cùng số dư
=> n+5 không chia hết cho 5 và n không chia hết cho 5
=> n.(n+5) không chia hết cho 25
mà 5 chia hết cho 5
=> n2 + 5n + n không chia hết cho 25
vậy với n thuộc N thì n2+5n+5 không chia hết cho 25
chú ý: không chia hết viết bằng kí hiệu
Chứng minh rằng với mọi số tự nhiên n thì số n2+5n+5 không thể chia hết cho 25.
n2+5n+5 chia hết cho 25
=>n2+5n+5 chia hết cho 5
Giả sử n2+5n+5 chia hết cho 5
Vì 5n+5=5(n+1) chia hết cho 5
=>n2 chia hết cho 5,mà 5 là số nguyên tố => n chia hết cho 5
do đó n có dạng:n=5k (k E N)
ta có:n2+5n+5=(5k)2+5.5k+5=52.k2+25k+5=25k2+25k+5
Vì 25k2+25k=25(k2+k) chia hết cho 25,mà 5 ko chia hết cho 25=>n2+5n+5 ko chia hết cho 25
=>Trái giả thiết
Vậy ....
Giả sử n^2 + 5n +5 chia het cho 25 => n^2+5n+5 chia het cho 5 => n^2 chia het cho 5 (do 5n+5 chia het cho 5)
Do đó n chia hết cho 5 (vì 5 là số ng tố) => n=5k (k thuoc N) => n^2+5n+5=25k^2+25k+5
do 25k^2+25k chia het cho 25 nhưng 5 khong chia het cho 25 nen n^2+5n+5 không chia hết cho 25
toan cau tra loi ngao cho
tìm các số tự nhiên a và b sao cho a.b=105 và a<b
chứng tỏ rằng với mọi số tự nhiên n thì (n+2017).(n+2018) luôn chia hết cho 2
chứng tỏ rằng với mọi số tự nhiên n thì (n+8).(n+12). (n+7)luôn chia hết cho 3
giúp mình với mình đang gấp!
Chứng tỏ rằng
a, (5n+7)(4n+6) chia hết cho 2 với mọi số tự nhiên n
b,(8n+1)(6n+5) không chia hết cho 2 với mọi số tự nhiên n
a,cách 1: ta có: (5n+7)(4n+6)=(5n+7)(2n+3).2 chia hết cho 2
Vậy (5n+7)(4n+6) chia hết cho 2
Cách 2: Ta thấy:4n+6 có chữ số tận cùng là số chẵn=>(5n+7)(4n+6) có chữ số tận cùng là số chẵn.
mà các số có chữ số tận cùng là số chẵn thì số đó chia het cho
vậy (5n+7)(4n+6) chia het cho (đpcm)
b,Ta thấy :8n+1 co chu so tan cung la so le(vi 8n co chu so tan cung la so chan,ma chan+le=le)
6n+5 co chu so tan cung la so le(vi 6n co chu so tan cung la so chan,ma chan+le=le)
từ 2 dieu tren=>(8n+1)(6n+5) co chu so tan cung la so le
vậy (8n+1)(6n+5) khong chia het cho 2 voi moi stn n
câu a bạn nên làm theo cách 2
Chứng tỏ rằng :
a) ( 5n + 7 ) x ( 4n + 6 ) chia hết cho 2 với mọi số tự nhiên n
b) ( 8n + 1 ) x ( 6n + 5 ) không chia hết cho 2 với mọi số tự nhiên n
chứng tỏ rằng với mọi số tự nhiên n thì tích ( n +3 ) ( n+6 ) chia hết cho 2
mình đang cần gấp giải giúp mình nha . mình sẻ tik cho người thật xứng đáng
Ta có
kết quả là:
Nếu n + 3 là số chẵn
=> ( n + 3 ) ( n + 6 ) chia hết cho 2
Nếu n + 6 là số chẵn
=> ( n + 3 ) ( n + 6 ) chia hết cho 2
Nếu n+3 là số chẵn thì\(\Rightarrow\)(n+3)(n+6) chia hết cho 2
Nếu n+6 là số chẵn thì (n+3)(n+6) chia hết cho 2
tk tôi nha
chứng tỏ rằng với mọi số nguyên dương ta có (n+2)(n+5) chia hết cho 2
Giúp mk với!! Mk đang cần gấp!! Tks mn nhìu
+nếu n là số chẵn thì n+2 là số chẵn nên chia hết cho 2,suy ra tích trên chia hết cho 2
+nếu n là số lẻ thì n+5 là số chẵn,chia hết cho 2,vậy tích trên cx chia hết cho 2
Vậy tích trên chia hết cho 2 với mọi n thuộc N