Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quynh Vu
Xem chi tiết
Trần tú Anh
Xem chi tiết
Nguyễn Phương HÀ
4 tháng 7 2016 lúc 15:09
Tứ giác ADMB có: AB//MD, AD//MB
 ADMB là hình bình hành  AB=MD và DAB^=DMB^
Tứ giác ACME có: AE//MC, AC//ME
 ACME là hình bình hành \Rightarrow AC=ME
Vì xy//BC nên DAC^=ACB^
mà ACB^=EMB^ nên DAC^=EMB^
Ta có: DAB^=DMB^
 DAB^−DAC^=DMB^−EMB^
hay BAC^=DME^
Tam giác ABC=MDE (c.g.c)
  
Lâm Văn Thành
15 tháng 1 2017 lúc 17:32

thiếu

00000
Xem chi tiết
nguyễn hương trà
4 tháng 1 lúc 12:37

Giải thích các bước giải:

a.Ta có xy//BC,MD//AB��//��,��//��

→AD//BM,AB//DM→ˆBMA=ˆMAD,ˆBAM=ˆAMD→��//��,��//��→���^=���^,���^=���^

Mà ΔABM,ΔMDAΔ���,Δ��� chung cạnh AM��

→ΔABM=ΔMDA(g.c.g)→Δ���=Δ���(�.�.�)

→AD=BM,MD=AB→��=��,��=��

Tương tự chứng minh được AE=MC,ME=AC��=��,��=��

→DE=DA+AE=BM+MC=BC→��=��+��=��+��=��

→ΔABC=ΔMDE(c.c.c)→Δ���=Δ���(�.�.�)

b.Gọi AM∩BD=I��∩��=�

→ˆIAD=ˆIMB,ˆIDA=ˆIBM(AD//BM)→���^=���^,���^=���^(��//��)

Mà AD=BM��=��

→ΔIAD=ΔIMB(g.c.g)→Δ���=Δ���(�.�.�)

→IA=IM,IB=ID→��=��,��=��

Lại có AE//CM→ˆEAI=ˆIMC��//��→���^=���^

Kết hợp AE=CM��=��

→ΔIAE=ΔIMC(c.g.c)→Δ���=Δ���(�.�.�)

→ˆAIE=ˆMIC→���^=���^

→ˆEIC=ˆAIE+ˆAIC=ˆMIC+ˆAIC=ˆAIM=180o→���^=���^+���^=���^+���^=���^=180�

→E,I,C→�,�,� thẳng hàng

→CE,AM,BD→��,��,�� đồng quy

image  
Bùi Quang Vinh
Xem chi tiết
Vô Danh
Xem chi tiết
Hello Kitty
Xem chi tiết
EDOGAWA CONAN SHINICHI
7 tháng 12 2018 lúc 12:48

1)Các đường thẳng EM và MD cắt AB và AC lần lượt là K và H.
Kẻ đường thẳng EM,Ta có Vì EC//KM ta có HAMˆHAM^=AMEˆAME^(1)
Vì AB//MD=>KAMˆKAM^=AMDˆAMD^(2)
BACˆBAC^=KAMˆKAM^+HAMˆHAM^(3)
tiếp KMDˆKMD^=KMAˆKMA^+AMDˆAMD^(4)
Từ (1),(2),(3) và (4)=>BACˆBAC^=EMDˆEMD^
Kẻ D với B.Xét tam giác ABD và tam giác MDB có:
DB là cạnh chung
MDBˆMDB^=DBAˆDBA^(vì MD//AB)
ADBˆADB^=DBMˆDBM^(vì xy//BC)
=>Tam giác ABD=Tam giác MDB(g.c.g)
=>DM=AB.
Kẻ E với C.Xét tam giác AEM và tam giác MCA có:
AM là cạnh chung
ACEˆACE^=CAMˆCAM^)(vì ME//AC)
EAMˆEAM^=AMCˆAMC^(vì xy//BC)
=>Tam giác AEM=Tam giác MCA(g.c.g)
=>ME=AC
Xét tam giác ABC và tam giác MDE có:
DM=AB(c/m trên)
ME=AC(c/m trên)
BACˆBAC^=EMDˆEMD^
=>Tam giác ABC=Tam giác MDE(c.g.c)
2)Thiếu điều kiện rồi.
Bài 6 mình sẽ bắt đầu bằng câu b nhé!
b)Vì MACˆMAC^+BAMˆBAM^=90o90o(gt)
MACˆMAC^+CAEˆCAE^=90o90o(gt)
Từ trên=>CAEˆCAE^= BAMˆBAM^
Xét tam giác ABM và tam giác ACE có:
AB=BC(gt)
AM=AE(gt)
CAEˆCAE^= BAMˆBAM^(c/m trên)
=>Tam giác ABM=Tam giác ACE(c.g.c)
=>EC=BM(hai cạnh tương ứng)
c)Ta có: MABˆMAB^+MACˆMAC^=90o90o(gt)
Ta lại có tiếp: MABˆMAB^+BADˆBAD^=90o90o(gt)
=>BADˆBAD^=MACˆMAC^
Xét tam giác ADB và tam giác AMC có:
AB=AC(gt)
DA=AM(gt)
BADˆBAD^=MACˆMAC^(c/m trên)
=>Tam giác ADB=Tam giác AMC(c.g.c)
=>DB=MC(hai cạnh tương ứng)
Ta có BM+MC=BC(do M nằm giữa B và C)
Mà BM=EC(c/m trên)
DB=MC(c/m trên)
=>EC+DB=BC
d)Vì Tam giác ABM=Tam giác ACE(c/m trên)
=>ACEˆACE^=B^B^=45o45o(Vì góc B là góc ở đáy của tam giác vuông cân BAC tại A)
Vậy Ta có C^C^+ACEˆACE^=BCEˆBCE^=90o90o.(1)
Vì Tam giác ADB=Tam giác AMC(c/m trên)
=>C^C^=DBAˆDBA^=45o45o
Vậy B^B^+DBAˆDBA^=DBCˆDBC^=90o90o(2)
Từ (1) và (2)=>BCEˆBCE^= DBCˆDBC^=90o90o vậy BCEˆBCE^+DBCˆDBC^=180o180o mà hai góc này nằm ở vị trí trong cùng phía =>DB//EC

Nguyễn Anh Tuan
Xem chi tiết
Trần Dương An
17 tháng 3 2018 lúc 10:35

Tứ giác ADMB có: AB//MD, AD//MB
 ADMB là hình bình hành  AB=MD và ˆDAB=ˆDMBDAB^=DMB^
Tứ giác ACME có: AE//MC, AC//ME
 ACME là hình bình hành \Rightarrow AC=ME
Vì xy//BC nên ˆDAC=ˆACBDAC^=ACB^
mà ˆACB=ˆEMBACB^=EMB^ nên ˆDAC=ˆEMBDAC^=EMB^
Ta có: ˆDAB=ˆDMBDAB^=DMB^
 ˆDAB−ˆDAC=ˆDMB−ˆEMBDAB^−DAC^=DMB^−EMB^
hay ˆBAC=ˆDMEBAC^=DME^
Tam giác ABC=MDE (c.g.c)

Longg
11 tháng 3 2020 lúc 14:50

Hình tự vẽ nhá :)

a) Có AD // BM (gt), DM // AB (gt) => DA = BM ; DM = AB ( t/c đoạn chắn ) (1)

AE // CM (gt); AC // EM (gt) => AE = CM ; AC = EM ( t/c đoạn chắn ) (2)

Từ (1) và (2) => AD + AE = BM + CM

=> DE = BC

Xét tam giác ABC và tam giác MDE có :

AB = DM ( cmt )

BC = DE ( cmt )

AC = EM ( cmt )

=> \(\Delta ABC=\Delta MDE\) ( c.c.c )

Khách vãng lai đã xóa
Nguyễn Như
Xem chi tiết
Vũ Ngọc Diệp
Xem chi tiết
mai mai la vay
31 tháng 1 2018 lúc 5:21

M ở đâu vậy bạn?

Trần Dương An
17 tháng 3 2018 lúc 10:36

Tứ giác ADMB có: AB//MD, AD//MB
 ADMB là hình bình hành  AB=MD và ˆDAB=ˆDMBDAB^=DMB^
Tứ giác ACME có: AE//MC, AC//ME
 ACME là hình bình hành \Rightarrow AC=ME
Vì xy//BC nên ˆDAC=ˆACBDAC^=ACB^
mà ˆACB=ˆEMBACB^=EMB^ nên ˆDAC=ˆEMBDAC^=EMB^
Ta có: ˆDAB=ˆDMBDAB^=DMB^
 ˆDAB−ˆDAC=ˆDMB−ˆEMBDAB^−DAC^=DMB^−EMB^
hay ˆBAC=ˆDMEBAC^=DME^
Tam giác ABC=MDE (c.g.c)

Laura
4 tháng 2 2020 lúc 15:47

x y A B C M E D I

a) Vì xy // BC 

\(\Rightarrow\)EAB = ABC (2 góc so le trong) (1)

Vì xy // BC

\(\Rightarrow\)DAC = ACB (2 góc so le trong) (2)

Vì AB // MD

\(\Rightarrow\)EAB =ADM (2 góc đòng vị) (3)

Vì ME //AC

\(\Rightarrow\)DAC =AEM (2 góc đồng vị) (4)

Từ (1) và (3) \(\Rightarrow\)ABC = ADM

Từ (2) và (4) \(\Rightarrow\)ACB =AEM 

Xét \(\Delta\)BAM và \(\Delta\)DAM có:

ABC = EDM (cmt)

AM: chung

BAM = AMD (xy // AB)

\(\Rightarrow\)\(\Delta\)BAM = \(\Delta\)DAM (g.c.g)

\(\Rightarrow\)AD = BM (2 cạnh tương ứng) (*)

Xét \(\Delta\)EMA và \(\Delta\)CAM có;

DEM = ACB (cmt)

AM; chung

EAM = AMC (EM // AC)

\(\Rightarrow\)\(\Delta\)EMA = \(\Delta\)CAM (g.c.g)

\(\Rightarrow\)AE = MC (2 cạnh tương ứng) (**)

Từ (*) và (**) \(\Rightarrow\)AE + AD = BM + MC 

Suy ra ED =  BC

Xét \(\Delta\)ABC và \(\Delta\)MDE có:

ABC = EDM (cmt)

ED = BC (cmt)

ACB =MED (cmt)

\(\Rightarrow\Delta\)ABC = \(\Delta\)MDE (g.c.g)

b) Gọi I là giao điểm của AM và BD

\(\Rightarrow\)\(\in\)BD và I \(\in\)AM

Xét \(\Delta\)AID và \(\Delta\)MIB có:

IMB = IAD (2 góc so le trong)

AD = BM (cm câu a)

IAD = IMB (2 góc so le trong)

\(\Rightarrow\Delta\)AID = \(\Delta\)MIB (g.c.g)

\(\Rightarrow\)ID = IB (2cạnh tương ứng)

Xét \(\Delta\)EID và \(\Delta\)CIB có:

ED = BC (cm câu a)

IBC = IDE (2 góc so le trong)

IB = ID (cmt)

\(\Rightarrow\)\(\Delta\)EID =\(\Delta\)CIB (c.g.c)

\(\Rightarrow\)BIC =DIE (2 góc tương ứng)

mà EIB + EID = 180o

\(\Rightarrow\)EIB + BIC = 180o

\(\Rightarrow\)EIC = 180o

\(\Rightarrow\)E, I, C thẳng hàng

\(\Rightarrow\)AM, BD, CE đồng quy

Khách vãng lai đã xóa