Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hien nguyen thi
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 11 2022 lúc 14:19

Câu 1: 

=>n(n+1)=1275

=>n^2+n-1275=0

=>\(n\in\varnothing\)

Câu 2:

a: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯC(2n+1;3n+1)={1;-1}

b: Gọi d=ƯCLN(7n+10;5n+7)

=>35n+50-35n-49 chia hết cho d

=>1 chia hết cho d

=>d=1

=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

PHẠM THANH BÌNH
Xem chi tiết
Hoa Minh Anh
Xem chi tiết
Hoang Nhu Phuong
10 tháng 2 2017 lúc 20:47

là 7 đó bạn

Khánh Linh Nguyễn
Xem chi tiết
Nguyễn Huy Tú
1 tháng 12 2016 lúc 22:25

Giải:

Gọi \(d=UCLN\left(3n+2;5n+3\right)\)

Ta có:

\(3n+2⋮d\)

\(5n+3⋮d\)

\(\Rightarrow5\left(3n+2\right)⋮d\)

\(3\left(5n+3\right)⋮d\)

\(\Rightarrow15n+10⋮d\)

\(15n+9⋮d\)

\(\Rightarrow15n+10-15n+9⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow UCLN\left(3n+2;5n+3\right)=1\)

\(\Rightarrow\)3n + 2 và 5n + 3 là 2 số nguyên tố cùng nhau

Vậy 3n + 2 và 5n + 3 là 2 số nguyên tố cùng nhau

Trần Quỳnh Mai
1 tháng 12 2016 lúc 22:31

Gọi d là ƯCLN(3n+2,5n+3)

Ta có : \(\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}\)

\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)

\(\Rightarrow15n+10-15n-9⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\RightarrowƯCLN\left(3n+2,5n+3\right)=1\)

Vậy : 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau .

do gia han
Xem chi tiết
Morgiara
Xem chi tiết
Hải Tặc Mũ Rơm
21 tháng 4 2016 lúc 20:58

Đặt n2+3n+5 = (*)

Giả sử n=1 => (*) <=> 12+3.1+5 không chia hết cho 121 ( đúng )

Vậy với n=1 đúng

Giả sử (*) đúng với n=k 

=> (*) <=> k2+3k+5

Ta cần c/m (*) đúng với n = k+1

Thật vậy với n= k+1 

=> (*) <=> (k+1)2+3(k+1)+5 

tự viết tiếp

bui tuyet mai
Xem chi tiết
võ thị thắm
Xem chi tiết
Nguyễn Tuấn Minh
5 tháng 4 2016 lúc 19:20

Cả 2 số này đều là số chẵn lớn hơn 2, vậy chúng không thể là số nguyên tố

Nguyễn Đăng Diện
5 tháng 4 2016 lúc 20:21

Ta có:

\(2009^{100}+1-2009^{100}+1=2009^{100}-2009^{100}+1+1=2\)

=>\(2009^{100}+1\) và \(2009^{100}-1\) khác tính chẵn lẻ

=>\(2009^{100}+1\) hoặc \(2009^{100}-1\) là số chẵn

Mà 2 số trên đều lớn hơn 2

=>Một trong 2 số trên là hợp số(ĐPCM)

phạm hải lâm
24 tháng 1 2018 lúc 12:39

ca 2 so deu chan =.>......

Phạm Thúy Hằng
Xem chi tiết